Skip to main content

Literature Review: Thermal Comfort and Air-Conditioning

  • Chapter
  • First Online:
The Future of Thermal Comfort in an Energy- Constrained World

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The cost of supplying energy to the office space has historically been insignificant compared to the cost of labour. A study on a typical American office (Holz et al. 1997) found the cost of salaries to be 100 times more than that of energy. In Singapore, the electrical consumption of offices accounts for 12 % of the overall non-manufacturing sector’s usage, with an average annual energy efficiency of 231 kWh/m2 (Lee 2001). In an ongoing study by the Energy Sustainability Unit in Singapore (esu.com.sg) the median office building uses 49 % of its energy on air-conditioning and a further 14 % on mechanical ventilation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann, M. (2002). Cool comfort: America’s romance with air-conditioning. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Alexander, D., & O’Rourke, M. (2008). Design Considerations For Active Chilled Beams. ASHRAE Journal, Sep 2008.

    Google Scholar 

  • Alfano, G., & D’Ambrosio, F. R. (1991). Clothing: An essential individual adjustment factor for obtaining general thermal comfort. Environment International, 17(4), 205–209.

    Article  Google Scholar 

  • Ali, Z., Tatlah, I. A., & Saeed, M. (2011). Motivation and student’s behavior: A tertiary level study. International Journal of Psychology and Counseling, 3(2), 29–32.

    Google Scholar 

  • Andamon, M. M. (2005). Building climatology and thermal comfort: Thermal environments and occupant (comfort) responses in Philippine office buildings (PhD). University of Adelaide.

    Google Scholar 

  • Apte, M. G., & Apte, J. S. (2010). A Pilot Study of the Effectiveness of Indoor Plants for Removal of Volatile Organic Compounds in Indoor Air in a Seven-Story Office Building (No. DE-AC02-05CH11231).

    Google Scholar 

  • ASHRAE. (1992). Standard 55: Thermal Environmental Conditions for Human Occupancy. Atlanta: American Society of Heating, Refrigerating and Air Conditioning Engineers.

    Google Scholar 

  • ASHRAE. (2004). Standard 55: Thermal Environmental Conditions for Human Occupancy. Atlanta: American Society of Heating, Refrigerating and Air Conditioning Engineers.

    Google Scholar 

  • ASHRAE. (2010). Standard 55: Thermal environmental conditions for human occupancy. Atlanta: American Society of Heating, Refrigerating and Air Conditioning Engineers.

    Google Scholar 

  • Attia, M., Engel, P., & Hildebrandt, G. (1980). Thermal comfort during work. International Archives of Occupational and Environmental Health, 45(3), 205–215.

    Article  Google Scholar 

  • Auliciems, A. (1969). Effects of Weather on Indoor Thermal Comfort. International Journal of Biometeorology, 13(2), 147–162.

    Article  Google Scholar 

  • Auliciems, A. (1981). Towards a psycho- physiological model of thermal perception. International Journal of Biometeorology, 25(2), 109–122.

    Article  Google Scholar 

  • Baker, N. (1996). The irritable occupant: Recent developments in thermal comfort theory. Architectural Research Quarterly, 2(02), 84–90.

    Google Scholar 

  • Baker, N., & Standeven, M. (1996). Thermal comfort for free-running buildings. Energy and Buildings, 23(3), 175–182.

    Article  Google Scholar 

  • Baskin, E., & Vineyard, E. A. (2003). Thermal comfort assessment of conventional and high-velocity distribution systems for cooling season. ASHRAE Transactions, 109(1), 513–519.

    Google Scholar 

  • Bligh, J., & Voigt, K. (Eds.). (1990). Thermoreception and Temperature Regulation. Berlin: Springer-Verlag.

    Google Scholar 

  • Brager, G. S., & de Dear, R. J. (1998). Thermal adaptation in the built environment: a literature review. Energy and Buildings, 27(1), 83–96.

    Article  Google Scholar 

  • Brager, G. S., & de Dear, R. (2001). Climate, comfort, and natural ventilation: A new adaptive comfort standard for ASHRAE standard 55. In Moving thermal comfort standards into the 21st century. Windsor, UK.

    Google Scholar 

  • Burroughs, H. E. B., & Hansen, S. J. (2004). Managing Indoor Air Quality. Fairmont Press, Incorporated.

    Google Scholar 

  • Cabanac, M. (1995). Human selective brain cooling. Austin: R G Landes Co.

    Google Scholar 

  • Calvino, F., La Gennusa, M., Rizzo, G., & Scaccianoce, G. (2004). The control of indoor thermal comfort conditions: introducing a fuzzy adaptive controller. Energy and Buildings, 36(2), 97–102.

    Article  Google Scholar 

  • Charles, K. E. (2003). Fanger’s thermal comfort and draught models. Ottawa: Institute for Research in Construction National Research Council of Canada.

    Google Scholar 

  • CIBSE. (1999). CiBSE technical memorandum—environmental factors affecting office worker performance. London: Chartered Institution of Building Services Engineers.

    Google Scholar 

  • Coller, F. A., & Maddock, W. G. (1934). The Function of Peripheral Vasoconstriction. Annals of Surgery, 100(5), 983–992.

    Article  Google Scholar 

  • Cook, J. (2000). Evolution of American office architecture to 1950. In Architecture, city, environment (pp. 16–21). Presented at the PLEA 2000, Cambridge, U.K.: James & James (Science Publishers) Ltd.

    Google Scholar 

  • Cooper, G. (1998). Air Conditioning America: Engineers and the controlled environment. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • De Dear, R. (2009). Thermal comfort in natural ventilation—a neurophysiological hypothesis. In Performative Ecologies In The Built Environment: Sustainability Research Across Disciplines. Presented at the 43rd Annual Conference of the Architectural Science Association, ANZAScA 2009, Tasmania: University of Tasmania (CD).

    Google Scholar 

  • De Dear, R. (2010). Past and future of thermal comfort and the HVAC industry. Presented at the AIRAH’s 90th Anniversary Conference: HVAC&R in the 21st Century, Sydney.

    Google Scholar 

  • De Dear, R. J., Brager, G., & Cooper, D. (1997). Developing an adaptive model of thermal comfort and preference (No. ASHRAE RP- 884). American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc., Macquarie Research, Ltd.

    Google Scholar 

  • De Dear, R. J., & Brager, G. S. (2002). Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE standard 55. Energy and Buildings, 34(6), 549–561.

    Article  Google Scholar 

  • De Dear, R. J., & Leow, K. G. (1990). Indoor climate and thermal comfort in high-rise public housing in an equatorial climate: A field-study in Singapore. Atmospheric Environment. Part B. Urban Atmosphere, 24(2), 313–320.

    Article  Google Scholar 

  • De Dear, & Richard, J. (1998). A Global Database of Thermal Comfort Field Experiments. ASHRAE Transactions, 104, 1141–1152.

    Google Scholar 

  • Emmanuel, M. R. (2005). An urban approach to climate-sensitive design. Oxon: Spon Press.

    Book  Google Scholar 

  • Fanger, O. (2001). Human requirements in future air-conditioned environments. International Journal of Refrigeration, 24(2), 148–153.

    Article  Google Scholar 

  • Fanger, P. O. (1970). Thermal comfort Copenhagen. Copenhagen: Danish Technical Press.

    Google Scholar 

  • Fanger, P. O. (1986). Thermal environment — Human requirements. The Environmentalist, 6(4), 275–278.

    Article  Google Scholar 

  • Fanger, P. O., Højbjerre, J., & Thomsen, J. O. B. (1974a). Thermal comfort conditions in the morning and in the evening. International Journal of Biometeorology, 18(1), 16–22.

    Article  Google Scholar 

  • Fanger, P. O., Östberg, O., McK. Nicholl, A. G., Breum, N. O., & Jerking, E. (1974). Thermal comfort conditions during day and night. European Journal of Applied Physiology, 33(4), 255–263.

    Google Scholar 

  • Fanger, P. O., & Toftum, J. (2002). Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and Buildings, 34(6), 533–536.

    Article  Google Scholar 

  • Federspiel, C., Liu, G., & Lahiff, M. (2002). Worker performance and ventilation: of individual data for call-center workers (pp. 796–801). Presented at the Indoor Air 2002.

    Google Scholar 

  • Fishman, D. S., & Pimbert, S. L. (1982). The thermal environment in offices. Energy and Buildings, 5(2), 109–116.

    Article  Google Scholar 

  • Fisk, W. J. (1999). Estimates of potential nationwide productivity and health benefits from better indoor environments: An update. New York: McGraw Hill.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations. (2006). The state of food insecurity in the World.

    Google Scholar 

  • Frank, R. H. (1999). Luxury fever (New edition). Princeton: Princeton University Press.

    Google Scholar 

  • Gladwell, M. (2004). The ketchup conundrum. The New Yorker, 6 Sept 2004.

    Google Scholar 

  • Grimme, F. W., Laar, M., & Moore, C. (2003). Man & Climate - Are We Loosing Our Climate Adaptation? Rio de Janeiro, Brazil.

    Google Scholar 

  • Haynes, B. (2007). An evaluation of office productivity measurement. Journal of Corporate Real Estate, 9(3), 144.

    Article  MathSciNet  Google Scholar 

  • Haynes, B. (2008a). The impact of office comfort on productivity. Journal of Facilities Management, 6(1), 37.

    Article  Google Scholar 

  • Haynes, B. P. (2008b). Office productivity: A self-assessed approach to office evaluation. In Proceedings from the PRRES Conference - 2008. Presented at the 14th Annual Conference of the Pacific Rim Real Estate Society, Kuala Lumpur, Malaysia.

    Google Scholar 

  • Hensel, H. (1981). Thermoreception and temperature regulation. London: Academic Press.

    Google Scholar 

  • Heschong, L. (1979). Thermal delight in architecture (4th ed.). Cambridge: The MIT Press.

    Google Scholar 

  • Hitchings, R., & Lee, S. J. (2008). Air Conditioning and the Material Culture of Routine Human Encasement: The Case of Young People in Contemporary Singapore. Journal of Material Culture, 13(3), 251–265.

    Article  Google Scholar 

  • Holz, R., Hourigan, A., Sloop, R., Monkman, P., & Krarti, M. (1997). Effects of standard energy conserving measures on thermal comfort. Building and Environment, 32(1), 31–43. doi:10.1016/S0360-1323(96)00025-X.

    Article  Google Scholar 

  • van Hoof, J. (2008). Forty years of Fanger’s model of thermal comfort: Comfort for all? Indoor Air, 18(3), 182–201.

    Article  Google Scholar 

  • Humphreys, M. A. (1975). Field studies of thermal comfort compared and applied (p. CP76/75 1–30). Presented at the Symposium on Physiological requirements of the microclimate, Prague: Building Research Establishment.

    Google Scholar 

  • Humphreys, M. A. (1995). Thermal comfort temperatures and the habits of hobbits. In Standards for thermal comfort (pp. 3–13). Windsor, UK: E & FN Spon.

    Google Scholar 

  • Humphreys, M. A., & Nicol, J. F. (1995). An adaptive guideline for UK office temperatures. In Standards for Thermal Comfort (pp. 190–195). Windsor, UK: E & FN Spon.

    Google Scholar 

  • Humphreys, M. A., & Nicol, J. F. (1998). Understanding the adaptive approach to thermal comfort. ASHRAE Transactions, 104, 991–1004.

    Google Scholar 

  • Humphreys, M. A., & Nicol, J. F. (2000). Outdoor temperature and indoor thermal comfort: Raising the precision of the relationship for the 1998 ASHRAE database of field studies / Discussion. ASHRAE Transactions, 106(1), 485–492.

    Google Scholar 

  • Humphreys, M. A., & Nicol, J. F. (2004). Do People like to feel “neutral”? Response to the ASHRAE scale of subjective warmth in relation to thermal preference, indoor and outdoor temperature/DISCUSSION. ASHRAE Transactions, 110(1), 569–577.

    Google Scholar 

  • Humphreys, M. A., & Nicol, J. F. (2007). Self-assessed productivity and the office environment: Monthly surveys in five European countries. ASHRAE Transactions, 113, 606–616.

    Google Scholar 

  • Irmak, M. K., Korkmaz, A., & Erogul, O. (2004). Selective brain cooling seems to be a mechanism leading to human craniofacial diversity observed in different geographical regions. Medical Hypotheses, 63(6), 974–979.

    Article  Google Scholar 

  • ISO. (1994). ISO 7730 Ergonomics of the thermal environmentAnalytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.

    Google Scholar 

  • ISO. (2005). ISO 7730 Ergonomics of the thermal environment: Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria.

    Google Scholar 

  • Janich, P. (1990). Physiology and language. Epistemological questions about scientific theories of perception. In Thermoreception and temperature regulation (pp. 151–159). Berlin: Springer.

    Google Scholar 

  • Jones, S. R. G. (1992). Was there a Hawthorne effect? American Journal of Sociology, 98(3), 451–468.

    Article  Google Scholar 

  • Johansson, C. (1975). Mental and perceptual performance in heat. (No. Report D4) (p. 283). Sweden: Building Research Council.

    Google Scholar 

  • Kähkönen, E. (1991). Draught, Radiant Temperature Asymmetry and Air Temperature – a Comparison between Measured and Estimated Thermal Parameters. Indoor Air, 1(4), 439–447.

    Article  Google Scholar 

  • Karbowski, J. (2009). Thermodynamic constraints on neural dimensions, firing rates, brain temperature and size. Journal of Computational Neuroscience, (in press).

    Google Scholar 

  • Kinney, J. (1992). Introduction (to conference proceedings). In Energy metabolism—tissue determinants and cellular corollaries. Presented at the Clintec International Horizons Conference, Amsterdam: Raven Press.

    Google Scholar 

  • Kishnani, N. (2002). Climate, buildings and occupant expectations: A comfort-based model for the design and operation of office buildings in hot-humid conditions. Bentley: Curtin University of Technology.

    Google Scholar 

  • Kosonen, R., & Tan, F. (2004). Assessment of productivity loss in air-conditioned buildings using PMV index. Energy and Buildings, 36(10), 987–993.

    Article  Google Scholar 

  • Krislov, S. (1997). How Nations Choose Product Standards and Standards Change Nations. Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Lan, L., Lian, Z., Pan, L., & Ye, Q. (2009). Neurobehavioral approach for evaluation of office workers’ productivity: The effects of room temperature. Building and Environment, 44(8), 1578–1588.

    Article  Google Scholar 

  • Link, J., & Pepler, R. (1970). Associated fluctuations in daily temperature, productivity and absenteeism. ASHRAE Transactions, 76(2), 326–337.

    Google Scholar 

  • Law, T. O., & Fay, R. (2009). Thermal comfort, productivity and energy consumption in the tropical office environment: A Critical overview. In Performative ecologies in the built environment: Sustainability research across disciplines. Presented at the 42nd International Architectural Science Association (ANZAScA) Conference, Launceston.

    Google Scholar 

  • Lee, S. E. (2001). Energy efficiency of office buildings in Singapore. Presented at the Seminar on Energy Efficiency in Building Design.

    Google Scholar 

  • Mazzei, P., Minichiello, F., & Palma, D. (2002). Desiccant HVAC systems for commercial buildings. Applied Thermal Engineering, 22(5), 545–560.

    Article  Google Scholar 

  • Mazzei, Pietro, Minichiello, F., & Palma, D. (2005). HVAC dehumidification systems for thermal comfort: a critical review. Applied Thermal Engineering, 25(5–6), 677–707.

    Article  Google Scholar 

  • McIntyre, D. A. (1976). Thermal sensation. A comparison of rating scales and cross modality matching. International Journal of Biometeorology, 20(4), 295–303.

    Article  Google Scholar 

  • McIntyre, D. A. (1980). Indoor climate. London: Applied Science Publishers.

    Google Scholar 

  • McKenzie, R. B. (2008). Why Popcorn Costs So Much at the Movies: And Other Pricing Puzzles (1st ed.). Springer.

    Google Scholar 

  • Meese, G. B., Kok, R., Lewis, M. I., & Wyon, D. P. (1982). Effects of moderate cold and heat stress on factory workers in Southern Africa. 2, skill and performance in the cold. South African Journal of Science, 78, 189–197.

    Google Scholar 

  • Meese, G. B., Kok, R., Lewis, M., & Wyon, D. P. (1984). A laboratory study of the effects of moderate thermal stress on the performance of factory workers. Ergonomics, 27(1), 19–43.

    Google Scholar 

  • Melikov, A. K. (2004). Personalized ventilation. Indoor Air, 14(7S), 157–167.

    Article  MathSciNet  Google Scholar 

  • Meyer, W. B. (2002). Why Indoor Climates Change: A Case Study. Climatic Change, 55(3), 395–407.

    Article  Google Scholar 

  • Nicol, F., Humphreys, M., Sykes, O., & Roaf, s. (1995). Standards for thermal comfort. London: Chapman & Hall.

    Google Scholar 

  • Nicol, F., & Pagliano, L. (2007). Allowing for thermal comfort in free-running buildings in the new European standard EN15251 (pp. 708–711). Presented at the 2nd PALENC Conference, Crete.

    Google Scholar 

  • Nicol, J. F., & Humphreys, M. A. (2009). New standards for comfort and energy use in buildings. Building Research and Information, 37D, 68–73.

    Google Scholar 

  • Nilsson, H. O. (2004). Comfort Climate Evaluation with Thermal Manikin Methods and Computer Simulation Models (PhD Thesis). Royal Institute of Technology, Sweden. University of Gävle, Sweden.

    Google Scholar 

  • O’Shaughnessy, J., & O’Shaughnessy, N. J. (2002). Marketing, the consumer society and hedonism. European Journal of Marketing, 36(5/6), 524–547.

    Article  Google Scholar 

  • Oseland, N., & Humphreys, M. A. (Eds.). (1993). Trends in Thermal Comfort Research. Watford: Building Research Establishment.

    Google Scholar 

  • Ohashi, Y., Genchi, Y., Kondo, H., Kikegawa, Y., Yoshikado, H., & Hirano, Y. (2007). Influence of air-conditioning waste heat on air temperature in Tokyo during summer: Numerical experiments using an urban canopy model coupled with a building energy model. Journal of Applied Meteorology and Climatology, 46(1), 66–81.

    Article  Google Scholar 

  • Pepler, R. D., & Warner, R. E. (1968). Temperature and learning: an experimental study. ASHRAE Transactions, 74(2), 211–219.

    Google Scholar 

  • Postaer, S. (2012). Lessons in creativity from Google to Forbes. US: Forbes.

    Google Scholar 

  • Prins, G. (1992). On condis and coolth. Energy and Buildings, 18(3–4), 251–258. doi:10.1016/0378-7788(92)90017-B.

    Article  Google Scholar 

  • Roaf, S., Crichton, D., & Nicol, F. (2005). Adapting Buildings and Cities for Climate Change. Oxford: Elsevier.

    Google Scholar 

  • Rohles, F. H. (2007). Temperature and temperament: A psychologist looks at comfort. ASHRAE Journal, 49(2), 14–22.

    Google Scholar 

  • Romm, J. J., & Browning, W. D. (1994). Greening the building and the bottom line—increasing productivity through energy-efficient design. Colorado: Rocky Mountain Institute.

    Google Scholar 

  • Rowe, D. M. (2001). Activity rates and thermal comfort of office occupants in Sydney. Journal of Thermal Biology, 26(4–5), 415–418. doi:10.1016/S0306-4565(01)00053-5.

    Article  Google Scholar 

  • Salerian, A. J., & Saleri, N. G. (2007). Cooling core body temperature may slow down neurodegeneration. CNSSpectrums, 13(3), 227–229.

    Google Scholar 

  • Schiavon, S. (2009). Energy saving with personalized ventilation and cooling fan. Italy: University of Padua.

    Google Scholar 

  • Schiller, G. E. (1990). A comparison of measured and predicted comfort in office buildings. ASHRAE Transactions, 96(1), 609–622.

    Google Scholar 

  • Seppänen, O., Fisk, W. J., & Faulkner, D. (2005). Control of temperature for health and productivity in offices. ASHRAE Transactions, 111(1), 680–686.

    Google Scholar 

  • Seppänen, O., Fisk, W. J., & Lei, Q. H. (2006). Effect of temperature on task performance in office environment (Report No. LBNL- 60946). Helsinki, Finland.

    Google Scholar 

  • Shove, E. (2003). Comfort, cleanliness and convenience: The social organization of normality. Oxford and New York: Berg.

    Google Scholar 

  • Singh, A., Syal, M., Grady, S. C., & Korkmaz, S. (2010). Effects of Green Buildings on Employee Health and Productivity. Am J Public Health, 100(9), 1665–1668. doi:10.2105/AJPH.2009.180687.

    Article  Google Scholar 

  • Simmonds, P. (1993). Thermal comfort and optimal energy use. ASHRAE Transactions, 99(1), 1037–1048.

    MathSciNet  Google Scholar 

  • Szokolay, S. (2000). Dilemmas of warm-humid climate house design: heavy vs. lightweight + cooling effect of air movement. In Architecture, city, environment (pp. 144–149). Presented at the PLEA, Cambridge: James & James (Science Publishers) Ltd.

    Google Scholar 

  • Trainer, T. (2007). Renewable energy cannot sustain a consumer society. Dordrecht: Springer.

    Google Scholar 

  • Tse, W. L., So, A. T. P., Chan, W. L., & Mak, I. K. Y. (2005). The validity of predicted mean vote for air-conditioned offices. Facilities, 23, 558–569.

    Article  Google Scholar 

  • Wargocki, P., Seppänen, O., Andersson, J., & Clements-Croome, D. J. (2006). Indoor climate and productivity in offices. Federation of European Heating and Airconditioning Associations.

    Google Scholar 

  • Wilhite, H., Nakagami, H., Masuda, T., Yamaga, Y., & Haneda, H. (1996). A cross-cultural analysis of household energy use behaviour in Japan and Norway. Energy Policy, 24(9), 795–803.

    Article  Google Scholar 

  • Wong, N. H., & Khoo, S. S. (2003). Thermal comfort in classrooms in the tropics. Energy and Buildings, 35(4), 337–351.

    Article  Google Scholar 

  • WWF. (2011). Earth hour poll: Nearly half of Singaporeans give thumbs down to strong air-conditioning. Retrieved 1 June 2012, from http://wwf.panda.org/who_we_are/wwf_offices/singapore/?199561/Earth-Hour-Poll-Nearly-Half-of-Singaporeans-Give-Thumbs-Down-to-Strong-Air-Conditioning.

  • Wyon. (1993). Healthy buildings and their impact on productivity. In Proceedings of Indoor Air’93. Presented at the 6th International Conference on Indoor Air Quality and Climate, Helsinki, Finland: Indoor Air.

    Google Scholar 

  • Wyon, D. P. (1974). The effects of moderate heat stress on typewriting performance. Ergonomics, 17(3), 309–318.

    Article  Google Scholar 

  • Wyon, D. P. (1976). Assessing the effects of moderate heat and cold stress on human efficiency. Presented at the Symposium: Factories for Profit - Environmental Design, Pretoria, South Africa: National Building Research Institute.

    Google Scholar 

  • Wyon, D. P. (1996). Indoor environmental effects on productivity. In Paths to better building environments (pp. 5–15). Presented at the IAQ 96, Atlanta: ASHRAE.

    Google Scholar 

  • Wyon, D. P., Andersen, I. B., & Lundqvist, G. R. (1979). The effects of moderate heat stress on mental performance. Scandinavian. J. Work Environment, and Health, 5, 352–361.

    Article  Google Scholar 

  • Yang, B. (2009). Thermal comfort and indoor air quality evaluation of a ceiling mounted personalized ventilation system integrated with an ambient mixing ventilation system. Thesis. National University of Singapore, Singapore.

    Google Scholar 

  • Yellott, J. I. (1989). Evaporative Cooling. In Passive Cooling (Ed.), (pp. 85–137). United States of America: The MIT Press.

    Google Scholar 

  • Zhang, H. (2003). Human thermal sensation and comfort in transient and non-uniform thermal environments. Berkeley: University of California.

    Google Scholar 

  • Zhang, H., Arens, E., Huizenga, C., & Han, T. (2010). Thermal sensation and comfort models for non-uniform and transient environments: Part I: Local sensation of individual body parts. Building and Environment, 45(2), 380–388.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Law .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Law, T. (2013). Literature Review: Thermal Comfort and Air-Conditioning. In: The Future of Thermal Comfort in an Energy- Constrained World. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00149-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00149-4_3

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00148-7

  • Online ISBN: 978-3-319-00149-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics