Skip to main content

Explaining the Sudden Rise of Methods of Indivisibles

  • Chapter
Seventeenth-Century Indivisibles Revisited

Part of the book series: Science Networks. Historical Studies ((SNHS,volume 49))

  • 886 Accesses

Abstract

This book will analyse the principal methods of indivisibles developed over the course of the seventeenth century. These analyses will be preceded by an examination of the general philosophical arguments regarding the composition of continuous magnitudes with which mathematicians were faced, and followed by a comparison of the different narratives put forward by historians of mathematics with regard to the content of these methods and their role in the formulation of differential and integral calculus.

Translated from French by Sam Brightbart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Phys. VI, 231 a21–232 a22.

  2. 2.

    Leibniz, Math. Schr., II, p. 219. All quotations are the translator’s own translations, except where otherwise indicated.

  3. 3.

    Montucla (1799, II, p. 29).

  4. 4.

    Cantor (1901, II, p. 750).

  5. 5.

    To Galileo, 28 June 1639, in Galileo Galilei, Opere, Vol. 18, n. 3889.

  6. 6.

    Component parts (“des éléments composants”) differ from determinant and constituent parts (“des éléments déterminants” and “constitutifs”) here in that they are of the same nature as that of which they are component.

  7. 7.

    Koyré (1954), quotation is a translation from the reprint Etudes d’histoire de la pensée scientifique, Paris, PUF, 1966, pp. 303/4.

  8. 8.

    Marquis de l’Hôpital (1696), Analyse des infiniment petits….

  9. 9.

    Torricelli, Opere scelte, p. 383, quoted in De Gandt (1987, p. 152).

  10. 10.

    Giusti (1980–2, pp. 201–202).

  11. 11.

    See Chap. 14, n. 9.

  12. 12.

    See Chap. 14, p. 4.

  13. 13.

    Letter to Torricelli, 1647, in 1693, Roberval, pp. 283–284.

  14. 14.

    Pascal, Letter to Carcavy, 1658, in Œuvres Complètes, Lafuma, p. 135.

  15. 15.

    See Chap. 12 .

  16. 16.

    Leibniz (1675–1676), De quadratura arithmetica circuli…, prop VI, p. 51. See Chap. 15.

  17. 17.

    Carnot (1797).

  18. 18.

    De Gandt (1987, p. 151).

  19. 19.

    See Chap. 5.

  20. 20.

    Cavalieri (1635), Translation of the text (b2, recto) of the 1653 edition in Bologna by Malet (1996, p. 16).

  21. 21.

    Leibniz, Math. Schrift. IV, 92; 2 February 1702.

  22. 22.

    Whiteside (1960, p. 184).

  23. 23.

    Guldin (1635–1641), De centro gravitatis, Lib. IV, Cap. V, Prop II, num 4, p. 342.

  24. 24.

    See Chap. 4.

  25. 25.

    Arnauld et Nicole (1662), quoted in english ed. 1727.

  26. 26.

    Arnauld et Nicole (1662), quoted in english ed. 1727, p. 375.

  27. 27.

    Carnot (1797, p. 113).

  28. 28.

    We will not discuss here whether or not these four characteristics are strictly novel, or whether or not some were, in part, already present in the work of other writers; nor will we discuss the significant reworking that the work of Newton and Leibniz subsequently underwent. This will only be a general, qualitative evaluation.

  29. 29.

    Comte (1879, p. 42). See Chap. 17.

  30. 30.

    Boyer (1959, p. 236).

  31. 31.

    Larousse du XIXe siècle, tome 14, p. 523 c.

  32. 32.

    Boyer (1959, p. 238) quoted in Dahan and Peiffer (1986). In this book, Amy Dahan and Jeanne Peiffer provide very clear judgments: “Any attempt to find clear definitions in Newton’s work will be met with failure”, p. 191.

    “In order to explain his ‘final ratio’—which is roughly equivalent to a limit—Newton resorts to an analogy with mechanics, using the image of the final speed of a body arriving at a certain position. The method of fluxions, even when it is based on the method of first and final ratios, remains inadequate for placing differential and integral calculus on solid foundations”, p. 193.

    “The strength of Leibniz’s method lies in the simplicity of his algorithm, his elegant notation, and the formalism he employs in operations which allows him to make calculations almost automatically, masking the nature of the objects in question. Whilst Leibniz does add infinitely small magnitudes to the system of usual magnitudes, the status of the former remains extremely vague. Leibniz wavers between taking a formalist approach and relying on analogies with geometry”, pp. 196–197.

    “The concept of limits cannot be deduced from the theories of Newton and Leibniz” (p. 197).

    “Despite the generality of the methods used for them, and the addition of algebra to the calculations associated with them, differential and integral calculus were not built on solid foundations. Fundamental concepts such as limits, continuity, derivatives, and integrals were not defined”, p. 197.

  33. 33.

    Marquis de l’Hôpital (1696).

  34. 34.

    Marquis de l’Hôpital (1696), Preface.

  35. 35.

    Leibniz, Math. Schrift. VII, 361; an den Freiherrn von Bodenhausen 1690.

  36. 36.

    Math. Schr. V, p. 350.

  37. 37.

    Breger (1992, p. 80).

  38. 38.

    Dahan and Peiffer (1986, p. 198).

  39. 39.

    Whiteside (1960, p. 184).

  40. 40.

    d’Alembert (1784, t. II, 310a).

  41. 41.

    Id.

  42. 42.

    Lagrange, Œuvres, ed. Serret, t. IX, 1881, p. 18.

  43. 43.

    Quoted in Brunschvicg (1922, p. 247).

  44. 44.

    Dahan and Peiffer (1986, p. 204).

  45. 45.

    Leibniz (1710), Theodicy, p. 53.

  46. 46.

    Ibid., p. 54.

  47. 47.

    Breger (1992, p. 76).

  48. 48.

    Brunschvicg (1922, p. 215). See Leibniz, Phil. Schr., III, p. 52.

  49. 49.

    Whiteside (1960, p. 381).

  50. 50.

    Leibniz (A), VI, 6, first ed. 1765, Preface to New Essays on Human Understanding, English trad. Jonathan Bennett, perpus-fkip/Perpustakaan/Filsafat/Filsafat Barat Klasik/leibne.pdf, 2005 (cor. 2008), The metaphysical root of Leibniz’s analysis is perfectly clear in the following passage: “all the different forms of life, which together make up the universe, are, in the ideas of God, who knows their fundamental gradation, merely a number of coordinates on a curve, between which no other points could be placed, as this would signify disorder or imperfection…”, Apud Gurhauer, Phil. Schr., I, p. 32, quoted in Brunschvicg (1922. p. 229).

  51. 51.

    Chasles (1837, note XXIV, p. 359).

  52. 52.

    Dahan and Peiffer (1986, p. 198).

  53. 53.

    Malet (1996, p. 155).

  54. 54.

    Whiteside (1960, p. 384).

References

  • 1635, Cavalieri, Bonaventura, Geometria Indivisibilibus Continuorum Nova quadam ratione promota, Authore P. Bonaventura Cavalerio Mediolan. Ordinis Iesuatorum S. Hieronymi. D. M. Mascarellae Pr. Ac in Almo Bonon. Gymn. Prim. Mathematicarum Professore. Ad Illustriss. Et Reverendiss. D. D. Ioannem Ciampolum. Bononiae, Typis Clementis Ferronij. M. DC. XXXV. Superiorum permissu, Bologne, Gio. Battista Ferroni, 1635.

    Google Scholar 

  • 1635–1641, Guldin, Paul (Habakuk), De centro gravitatis trium specierum quantitatis continue, Vienne, Gregorius Gelbhaar, 1635–1641.

    Google Scholar 

  • 1647, Roberval, Gilles Personne de, « Lettre à Torricelli », in Divers Ouvrages mathématiques et de physique par MMrs les savants de l’Académie Royale des Sciences, Paris, Imprimerie Royale, 1693, pp. 283–302.

    Google Scholar 

  • 1658, Pascal, Blaise, Lettre de A. Dettonville à Monsieur de Carcavy, en luy envoyant une Méthode generale pour trouver les Centres de gravité de toutes sortes de grandeurs : Un Traitté des Trilignes et de leurs onglets ; Un Traitté des Sinus du quart de Cercle… ; Un Traitté des Arcs de Cercle ; Un Traitté des Solides circulaires ; Et enfin un un Traitté general de la Roulette, qu’il avoit proposez publiquement au mois de Iuin 1658. A PARIS, M.DC.LVIII, Paris, Guillaume Desprez, 1658.

    Google Scholar 

  • 1662, Arnauld, Antoine and Nicole Pierre, La logique ou l’art de penser, Paris, Charles Savreux, 1662 ; Clair and Girbal, Paris, PUF, 1965; translated by Mr Ozell, Logic, or the art of thinking, London, William Taylor, 1727.

    Google Scholar 

  • 1675–1676, Leibniz, Gottfried Wilhelm, De quadratura arithmetica circuli ellipseos et hyperbolae cujus corolarium est trigonometria sine tabulis, critical edition and commentary by Eberhard Knobloch, in Abhandlungen der Akademie der Wissenschaften in Göttingen, Mathematisch-physikalische Klasse 3. Folge, Nr. 43, Vandenhoeck and Ruprecht, Göttingen, 1993; French translation, introduction and notes by Marc Parmentier, Quadrature arithmétique du cercle, de l’ellipse et de l’hyperbole, Paris, Vrin, Mathesis, 2004.

    Google Scholar 

  • 1696, L’Hôpital, Guillaume, Marquis de, Analyse des infiniment petits pour l’intelligence des lignes courbes, Paris, Jombert, 1696 ; reed. 1716 then in 1768 by Didot le jeune.

    Google Scholar 

  • 1710, Leibniz, Gottfried Wilhelm, essais de théodicée sur la bonte de Dieu, la Liberté de l’homme et l’origine du mal, chez Isaac Troyel, Paris, 1710, in 8°. Réed. Phil. Schr. VI. English transl. Theodicy: Essays on the Goodness of God, the Freedom of Man and the Origins of Evil, Translated by Austin Marsden Farrer. Chicago: Open Court Publishing, 1985

    Google Scholar 

  • 1784, D’Alembert, Jean le Rond, entry « Limite » in the Encyclopédie Méthodique, Mathématique, Paris, Panckouke et Liège, Plomteux, 1784, 3 vol. ; reprint ACL ed., 1987, t.II, 310a.

    Google Scholar 

  • 1797, Carnot, Lazare, Réflexions sur la métaphysique du Calcul infinitésimal, Paris, Duprat, 1797 ; 4th ed. 1860 ; reed. Paris, Albert Blanchard, 1970.

    Google Scholar 

  • Boyer, Carl Benjamin (1959), The History of the Calculus and its Conceptual Development, New York, Dover Publications, 1959.

    Google Scholar 

  • Breger, Herbert (1992), « Le continu chez Leibniz », in Le labyrinthe du continu, edited by J.M. Salanskis and H. Sinaceur, Paris, Springer-Verlag, 1992.

    Google Scholar 

  • Chasles, Michel (1837), Aperçu historique sur l’origine et le développement des méthodes en géométrie, Bruxelles, Hayez, 1837.

    Google Scholar 

  • Comte, Auguste (1879), Essai sur la philosophie des mathématiques, composed after Comte’s death from manuscripts texts and letters of the author by Pierre Laffite, Paris, au bureau de la Revue occidentale, 1879.

    Google Scholar 

  • Dahan, Amy and Peiffer, Jeanne (1986), Une Histoire des mathématiques, routes et dédales, Paris, Seuil, 1986.

    Google Scholar 

  • De Gandt, François (1987), « Les indivisibles de Torricelli » in L’Œuvre de Torricelli, science galiléenne et nouvelle géométrie, edited by François De Gandt, Nice, Les Belles Lettres, Publications de la Faculté des Lettres et Sciences Humaines de Nice, I, 32 (1987) pp. 147–206.

    Google Scholar 

  • Koyré, Alexandre (1966), « Bonaventura Cavalieri et la géométrie des continus », in Hommage à Lucien Febvre, Paris Colin, 1954, pp. 319–340, reprinted in Etudes d’histoire de la pensée scientifique, Paris, PUF, 1966.

    Google Scholar 

  • Malet, Antoni (1996), From Indivisibles to Infinitesimals. Studies on Seventeenth-Century Mathematization of Infinitely Small Quantities, Barcelona, Servei de Publication de la Universitat Autònoma de Barcelona, 1996.

    Google Scholar 

  • (1799), a second edition largely extended Paris, Agasse, 1799 ; reprint. Paris, Blanchard, 1960, 4 vol.

    Google Scholar 

  • Whiteside, Derek T. (1960), « Patterns of mathematical thought in the later seventeenth century », in Archive for History of Exact Sciences, 1 (1960–1962) pp. 179–388.

    Google Scholar 

  • Brunschvicg, Léon (1922), Les étapes de la philosophie mathématiques, Paris, Alcan, 1922, reed. Paris, Blanchard, 1981.

    Google Scholar 

  • Cantor, Moritz (1901), Vorlesungen über Geschichte der Mathematik, Leipzig, B. G. Teubner, zweiten Auflage, 1894–1901, 4 vol.

    Google Scholar 

  • Giusti, Enrico (1980), Bonaventura Cavalieri and the theory of indivisibles, Bologna, Edizioni Cremonese, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Jullien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jullien, V. (2015). Explaining the Sudden Rise of Methods of Indivisibles. In: Jullien, V. (eds) Seventeenth-Century Indivisibles Revisited. Science Networks. Historical Studies, vol 49. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-00131-9_1

Download citation

Publish with us

Policies and ethics