H Well-Posedness for Degenerate p-Evolution Models of Higher Order with Time-Dependent Coefficients

  • Torsten HerrmannEmail author
  • Michael Reissig
  • Karen Yagdjian
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 44)


In this paper we deal with time dependent p-evolution Cauchy problems. The differential operators have characteristics of variable multiplicity. We consider a degeneracy only in t=0. We shall prove a well-posedness result in the scale of Sobolev spaces using a C 1-approach. In this way we will prove H well-posedness with an (at most) finite loss of regularity.


p-Evolution equations Well-posedness Loss of derivatives Oscillations in coefficients Schrödinger type operators 

Mathematics Subject Classification

35J10 35Q41 



The joint considerations were supported by the German Research Foundation (DFG) in project GZ: RE 961/18-1.


  1. 1.
    Ascanelli, A., Ciciognani, C., Colombini, F.: The global Cauchy problem for a vibrating beam equation. J. Differ. Equ. 247, 1440–1451 (2009) zbMATHCrossRefGoogle Scholar
  2. 2.
    Ascanelli, A., Boiti, C., Zanghirati, L.: Well-posedness of the Cauchy problem for p-evolution equations. Preprint del Dip. di Matematica dell’Università di Ferrara 375 (2012).
  3. 3.
    Ciciognani, C., Colombini, F.: The Cauchy problem for p-evolution equations. Trans. Am. Math. Soc. 362, 4853–4869 (2010) CrossRefGoogle Scholar
  4. 4.
    Cicognani, C., Herrmann, T.: H well-posedness for a 2-evolution Cauchy problem with complex coefficients. J. Pseudo-Differ. Oper. Appl. 4(1), 63–90 (2013) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Ciciognani, C., Hirosawa, F., Reissig, M.: Loss of regularity for p-evolution type models. J. Math. Anal. Appl. 347, 35–58 (2008) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Herrmann, T.: H well-posedness for degenerate p-evolution operators. Dissertation (2012) Google Scholar
  7. 7.
    Herrmann, T., Reissig, M.: A sharp result for time-dependent degenerate p-evolution Cauchy problems of second order. In preparation Google Scholar
  8. 8.
    Hirosawa, F.: Unpublished notes Google Scholar
  9. 9.
    Hirosawa, F., Reissig, M.: About the optimality of oscillations in non-Lipschitz coefficients for strictly hyperbolic equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 44, 589–608 (2004) MathSciNetGoogle Scholar
  10. 10.
    Ichinose, W.: Some remarks on the Cauchy problem for Schrödinger type equations. Osaka J. Math. 21, 565–581 (1984) MathSciNetzbMATHGoogle Scholar
  11. 11.
    Mizohata, S.: The Theory of Partial Differential Equations. Cambridge University Press, Cambridge (1973) zbMATHGoogle Scholar
  12. 12.
    Mizohata, S.: On the Cauchy Problem. Notes and Reports in Mathematics in Science and Engineering, vol. 3. Academic Press, San Diego (1985) zbMATHGoogle Scholar
  13. 13.
    Petrowsky, I.: Über das Cauchysche Problem für ein System linearer partieller Differentialgleichungen im Gebiete der nichtanalytischen Funktionen. Bull. de l’Univ. de l’Etat de Moscow (1938) Google Scholar
  14. 14.
    Yagdjian, K.: The Cauchy Problem for Hyperbolic Operators: Multiple Characteristics, Micro-local Approach. Akademie Verlag, Berlin (1997) zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Torsten Herrmann
    • 1
    Email author
  • Michael Reissig
    • 1
  • Karen Yagdjian
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceTU Bergakademie FreibergFreibergGermany
  2. 2.Department of MathematicsUniversity of Texas—Pan AmericanEdinburgUSA

Personalised recommendations