Advertisement

Solution of the Cauchy Problem for Generalized Euler-Poisson-Darboux Equation by the Method of Fractional Integrals

  • A. K. UrinovEmail author
  • S. T. Karimov
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 44)

Abstract

In this work the singular Cauchy problem for the multi-dimensional Euler-Poisson-Darboux equation with spectral parameter has been investigated with the help of the generalized Erdelyi-Kober fractional operator. Solution of the considered problem is found in explicit form for various values of the parameter p of the equation.

Keywords

Cauchy problem Euler-Poisson-Darboux equation Erdelyi-Kober operator Bessel-Clifford function 

Mathematics Subject Classification

35L10 35Q05 26A33 

References

  1. 1.
    Euler, L.: Institutiones Calculi Integralis. Impenfis Academiae Imperialis Scientiarum, Petropoli (1770) Google Scholar
  2. 2.
    Poisson, S.D.: Memoire sur l’integration des equations lineaires aux differences partielles. J. l’Ecole Rog. Politech. 12, 215–248 (1823) Google Scholar
  3. 3.
    Riemann, B.: Versuch einer allgemeinen auffassung der integration und differentiation. In: Gessammelte Mathematische Werke, pp. 331–334. Teubner, Leipzig (1876) Google Scholar
  4. 4.
    Darboux, G.: Lecons sur la Theorie Generale des Surfaces et les Applications Geometriques du Calcul Infinitesimal, vol. 2. Gauthier-Villars, Paris (1915) Google Scholar
  5. 5.
    Tricomi, F.G.: Sulle equazioni lineari alle derivate parziali di 2 ordine di tipo misto. Mem. Lincei, Ser. V, XIV, fasc. VII (1923) Google Scholar
  6. 6.
    Bitsadze, A.V.: Some Classes of Partial Differential Equations. Advanced Studies in Contemporary Mathematics, vol. 4. Gordon & Breach, New York (1988) zbMATHGoogle Scholar
  7. 7.
    Smirnov, M.M.: Equations of Mixed Type. Translations of Mathematical Monographs, vol. 51. Am. Math. Soc., Providence (1978). Translated from the Russian Google Scholar
  8. 8.
    Weinstein, A.: Generalized axially symmetric potential theory. Bull. Am. Math. Soc. 59(1), 20–38 (1953) zbMATHCrossRefGoogle Scholar
  9. 9.
    Weinstein, A.: On the wave equation and the equation of Euler-Poisson. In: Wave Motion and Vibration Theory. Proc. Sympos. Appl. Math., vol. 5, pp. 137–147. McGraw-Hill, New York (1954) CrossRefGoogle Scholar
  10. 10.
    Weinstein, A.: The generalized radiation problem and the Euler-Poisson-Darboux equation. Summa Bras. Math. 3, 125–147 (1955) Google Scholar
  11. 11.
    Weinstein, A.: On a singular differential operator. Summa Bras. Math. 49, 359–365 (1960) zbMATHGoogle Scholar
  12. 12.
    Young, E.C.: On a generalized Euler-Poisson-Darboux equation. J. Math. Mech. 18(12), 1167–1175 (1969) MathSciNetzbMATHGoogle Scholar
  13. 13.
    Diaz, J.B., Weinberger, H.F.: A solution of the singular initial value problem for the Euler-Poisson-Darboux equation. Proc. Am. Math. Soc. 4(5), 703–715 (1953) MathSciNetzbMATHGoogle Scholar
  14. 14.
    Blum, E.K.: The Euler-Poisson-Darboux equation in the exceptional cases. Proc. Am. Math. Soc. 5(4), 511–520 (1954) zbMATHCrossRefGoogle Scholar
  15. 15.
    Kapilevich, M.B.: On an equation of mixed elliptic–hyperbolic type. Mat. Sb. 30, 11–38 (1952) Google Scholar
  16. 16.
    Fox, D.W.: The solution and Huygens’ principle for a singular Cauchy problem. J. Math. Mech. 8, 197–220 (1959) MathSciNetzbMATHGoogle Scholar
  17. 17.
    Blum, E.K.: A uniqueness theorems for the Euler-Poisson-Darboux equation. Bull. Am. Math. Soc. Abstract 59-4-350 Google Scholar
  18. 18.
    Bresters, D.W.: On the Euler-Poisson-Darboux equation. SIAM J. Math. Anal. 4(1), 31–41 (1973) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Erdelyi, A.: Some applications of fractional integration. Boeing Sci. Res. Labor. Docum. Math. Note N 316, Dl-82-0286 (1963) Google Scholar
  20. 20.
    Erdelyi, A.: An application of fractional integrals. J. Anal. Math. 14, 113–126 (1965) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Erdelyi, A.: Axially symmetric potentials and fractional integration. J. Soc. Ind. Appl. Math. 13(1), 216–228 (1965) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Erdelyi, A.: On the Euler-Poisson-Darboux equation. J. Anal. Math. 23, 89–102 (1970) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Friedlander, F.G., Heins, A.E.: On the representation theorems of Poisson, Riemann and Volterra for the Euler-Poisson-Darboux equation. Arch. Ration. Mech. Anal. 33(3), 219–230 (1969) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Lowndes, J.S.: A generalization of the Erdelyi-Kober operators. Proc. Edinb. Math. Soc. 17(2), 139–148 (1970) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Lowndes, J.S.: An application of some fractional integrals. Proc. Edinb. Math. Soc. 20(1), 35–41 (1979) MathSciNetzbMATHGoogle Scholar
  26. 26.
    Lowndes, J.S.: Cauchy problems for second order hyperbolic differential equations with constant coefficients. Proc. Edinb. Math. Soc. 26(3), 307–311 (1983) MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Erdelyi, A.: Higher Transcendental Functions. Bateman Project, vol. 1. McGraw-Hill, New York (1953) Google Scholar
  28. 28.
    Erdelyi, A.: Higher Transcendental Functions. Bateman Project, vol. 2. McGraw-Hill, New York (1954) Google Scholar
  29. 29.
    Erdelyi, A.: Higher Transcendental Functions. Bateman Project, vol. 3. McGraw-Hill, New York (1955) zbMATHGoogle Scholar
  30. 30.
    Courant, R., Hilbert, D.: Methoden der Mathematischen Phisik, vol. II. Springer, Berlin (1937) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Ferghana State UniversityFerghana cityRepublic of Uzbekistan

Personalised recommendations