Skip to main content

Global Existence and Energy Decay of Solutions for a Nondissipative Wave Equation with a Time-Varying Delay Term

  • Conference paper
Progress in Partial Differential Equations

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 44))

Abstract

We consider the energy decay for a nondissipative wave equation in a bounded domain with a time-varying delay term in the internal feedback. We use an approach introduced by Guesmia which leads to decay estimates (known in the dissipative case) when the integral inequalities method due to Haraux-Komornik (Haraux in Nonlinear Partial Differential Equations and Their Applications. Collège de France seminar, Vol. VII (Paris, 1983–1984), pp. 161–179, 1985; Komornik in Exact Controllability and Stabilization: The Multiplier Method, 1994) cannot be applied due to the lack of dissipativity. First, we study the stability of a nonlinear wave equation of the form

in a bounded domain. We consider the general case with a nonlinear function h satisfying a smallness condition and obtain the decay of solutions under a relation between the weight of the delay term in the feedback and the weight of the term without delay. We impose no control on the sign of the derivative of the energy related to the above equation. In the second case we take θconst and h(∇u)=−∇Φ⋅∇u. We prove an exponential decay result of the energy without any smallness condition on Φ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdallah, C., Dorato, P., Benitez-Read, J., Byrne, R.: Delayed positive feedback can stabilize oscillatory system. In: American Control Conference, San Francisco, pp. 3106–3107 (1993)

    Google Scholar 

  2. Benaissa, A., Benazzouz, S.: Energy decay of solutions to the Cauchy problem for a nondissipative wave equation. J. Math. Phys. 51, 123504 (2010)

    Article  MathSciNet  Google Scholar 

  3. Cavalcanti, M.M., Larkin, N.A., Soriano, J.A.: On solvability and stability of solutions of nonlinear degenerate hyperbolic equations with boundary damping. Funkc. Ekvacioj 41, 271–289 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Chen, G.: Control and stabilization for the wave equation in a bounded domain, part I. SIAM J. Control Optim. 17, 66–81 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, G.: Control and stabilization for the wave equation in a bounded domain, part II. SIAM J. Control Optim. 19, 114–122 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Datko, R., Lagnese, J., Polis, M.P.: An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24, 152–156 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guesmia, A.: A new approach of stabilization of nondissipative distributed systems. SIAM J. Control Optim. 42, 24–52 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guesmia, A.: Nouvelles inégalités intégrales et application à la stabilisation des systèmes distribués non dissipatifs. C. R. Math. Acad. Sci. Paris 336, 801–804 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guesmia, A.: Inégalités intégrales et application à la stabilisation des systèmes distribués non dissipatifs. HDR thesis, Paul Verlaine-Metz University (2006)

    Google Scholar 

  10. Haraux, A.: Two remarks on dissipative hyperbolic problems. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. VII (Paris, 1983–1984). Research Notes in Mathematics, vol. 122, pp. 161–179. Pitman, Boston (1985)

    Google Scholar 

  11. Komornik, V.: Exact Controllability and Stabilization: The Multiplier Method. Masson, Paris (1994)

    MATH  Google Scholar 

  12. Lasiecka, I., Triggiani, R.: Uniform exponential energy decay of wave equations in a bounded region with L 2(0,∞;L 2(Γ))-feedback control in the Dirichlet boundary conditions. J. Differ. Equ. 66, 340–390 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  14. Martinez, P.: A new method to obtain decay rate estimates for dissipative systems. ESAIM Control Optim. Calc. Var. 4, 419–444 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nakao, M.: Decay of solutions of some nonlinear evolution equations. J. Math. Anal. Appl. 60, 542–549 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45, 1561–1585 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nicaise, S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed delay. Differ. Integral Equ. 21, 935–958 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Nicaise, S., Valein, J., Fridman, E.: Stability of the heat and of the wave equations with boundary time-varying delays. Discrete Contin. Dyn. Syst., Ser. S 2, 559–581 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nicaise, S., Pignotti, C., Valein, J.: Exponential stability of the wave equation with boundary time-varying delay. Discrete Contin. Dyn. Syst., Ser. S 4, 693–722 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Suh, I.H., Bien, Z.: Use of time delay action in the controller design. IEEE Trans. Autom. Control 25, 600–603 (1980)

    Article  MATH  Google Scholar 

  21. Xu, C.Q., Yung, S.P., Li, L.K.: Stabilization of the wave system with input delay in the boundary control. ESAIM Control Optim. Calc. Var. 12, 770–785 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank very much the referees for their important remarks and comments which allow us to correct and improve this paper. This work has been partially funded by KFUPM under Project #FT111002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbes Benaissa .

Editor information

Editors and Affiliations

Appendix

Appendix

We now state some lemmas that we previously used (see proofs in [8, 14]).

Lemma 3

(Sobolev-Poincaré’s inequality)

Let q be a number with 2≤q<+∞ (n=1,2) or 2≤q≤2n/(n−2) (n≥3). Then there is a constant c =c (Ω,q) such that

$$\| u\|_{q}\leq c_{*}\|\nabla u\|_{2} \quad \mbox{\textit{for} } u\in H_{0}^{1}(\varOmega ). $$

Lemma 4

([14])

Let \(E: {\mathbb{R}}_{+}\to{ \mathbb{R}}_{+}\) be a non increasing function and \(\phi:{\mathbb{R}}_{+}\to{ \mathbb{R}}_{+}\) be an increasing C 1 function such that

$$\phi(0)=0 \quad\mbox{\textit{and}} \quad\phi(t)\to+\infty\quad\hbox{\textit{as} } t\to+\infty. $$

Assume that there exist σ≥0 and ω>0 such that

$$ \int_S^{+\infty} E^{1+\sigma}(t) \phi'(t) dt \leq\frac{1}{\omega} E^{\sigma}(0)E(S), \quad 0\leq S<+ \infty. $$
(74)

Then

(75)
(76)

In order to state the last lemma, we follow [8, 9] to introduce the function \(h:\mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\). Let r be a non-negative real number, α a strictly positive real number, \(\omega:\mathbb{R}^{+}\rightarrow \mathbb{R}^{+*}\) and \(\lambda:\mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\) two continuous functions. We set \({\tilde{\lambda}}(t)=\int_{0}^{t}\lambda(\tau) d\tau\) and find

$$ \int_{0}^{+\infty} e^{(r+1){\tilde{\lambda}}(t)} dt=+\infty. $$
(77)

For fixed \(s\in \mathbb{R}^{+}\), we define the function \(I_{s}:\mathbb{R}^{+}\rightarrow \mathbb{R}\) by

$$I_{s}(t)= \bigl(\omega(s) \bigr)^{r+1}\int _{s}^{t}e^{(r+1){\tilde{\lambda}}(\tau )} d\tau-e^{(r+1){\tilde{\lambda}}(s)} \biggl( \bigl(\alpha\omega (0) \bigr)^{r}+r\int_{0}^{s} \bigl(\omega(\tau) \bigr)^{r+1} d\tau \biggr). $$

We have: \(I_{s}\in C^{1}(\mathbb{R}^{+})\), \(I'_{s}(t)=(\omega(s))^{r+1}e^{(r+1){\tilde{\lambda}}(t)}>0\),

$$\begin{aligned} I_{s}(0)={}& \bigl(\omega(s) \bigr)^{r+1}\int _{s}^{0}e^{(r+1){\tilde{\lambda}}(\tau )} d\tau\\ &{}-e^{(r+1){\tilde{\lambda}}(s)} \biggl( \bigl(\alpha\omega (0) \bigr)^{r}+r\int_{0}^{s} \bigl(\omega(\tau) \bigr)^{r+1} d\tau \biggr)< 0 \end{aligned} $$

and from (77) lim t→+∞ I s (t)=+∞. Therefore I s has a unique root in \(\mathbb{R}^{+*}\) which will be noted g(s) whence we define \(g:\mathbb{R}^{+}\rightarrow \mathbb{R}^{+*}\) by

$$ I_{s} \bigl(g(s) \bigr)=0, \quad \forall s\geq0. $$
(78)

On the other hand, g is continuous due to the continuity of ω. Also we have

$$I_{s}(s)=-e^{(r+1){\tilde{\lambda}}(s)} \biggl( \bigl(\alpha\omega(0) \bigr)^{r}+r\int_{0}^{s} \bigl(\omega( \tau) \bigr)^{r+1} d\tau \biggr)<0, $$

hence g(s)>s, and lim s→+∞ g(s)=+∞. Therefore, g is surjective from \(\mathbb{R}^{+}\) to [g(0),+∞[. Now let t∈ ]g(0),+∞[ be fixed. We define the function \(J_{t}:[0, t]\rightarrow \mathbb{R}^{+}\) by

The function J t is positive and differentiable on [0,t] and we have:

Since \(J'_{t}(s)\) has the same sign as I s (t), then \(J'_{t}> 0\) holds on the right of 0 (because t>g(0)) and on the left of 0 (because g(s)>s). Then J t has a maximum on [0,t] at least in one point s 0∈ ]0,t[ satisfying \(I_{s_{0}}(t)=0\), hence s 0g −1({t}).

Now, we define the function \(h: \mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\) by:

$$ h(t)= \left \{ \begin{array}{l@{ \quad}l} 0 & \mbox{if } t\in[0, g(0)], \\ \max g^{-1}(\{t\}) & \mbox{if } t\in\,]g(0), +\infty]. \end{array} \right . $$
(79)

We have, for all t>g(0):h(t)∈g −1({t}) and I h(t)(t)=0.

If ω is a constant, then g is an increasing function (it suffices to derive the equality (78)) and in this case

$$h(t)= \everymath{\displaystyle } \left \{ \begin{array}{l@{ \quad}l} 0 & \mbox{if } t\in\biggl[0, D^{-1} \biggl(\frac{\alpha^{r}}{\omega} \biggr) \biggr], \\[10pt] g^{-1}\bigl(\{t\}\bigr)=K^{-1}\bigl(D(t)\bigr) & \mbox{if } t\in \biggl]D^{-1} \biggl(\frac{\alpha^{r}}{\omega} \biggr), +\infty \biggr], \end{array} \right . $$

where K and D are two functions defined on \(\mathbb{R}^{+}\) by

$$K(t)=D(t)+e^{(r+1){\tilde{\lambda}}(t)} \biggl(rt+ \frac{\alpha^{r}}{ \omega} \biggr), \quad D(t)= \int _{0}^{t} e^{(r+1){\tilde{\lambda}}(\tau)} d\tau. $$

Lemma 5

([8])

Let \(E: {\mathbb{R}}_{+}\to{ \mathbb{R}}_{+}\) be a differentiable function, \(\lambda\in \mathbb{R}^{+}\), \(a_{3}\in \mathbb{R}^{+}\), \(a_{1}, a_{2}:\mathbb{R}^{+}\rightarrow \mathbb{R}^{+*}=(0, +\infty)\) and \(\lambda: \mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\) three continuous functions. Assume that there exist r,p≥0 such that

$$a_{3}(r+1) \sup_{t\geq0} \bigl\{\lambda(t) \bigr\}< 1 $$

and for all 0≤sT<+∞

$$ \begin{cases} \int_s^{T} E^{r+1}(t) dt\leq a_{1} E (s)+ a_{2} E^{p+1}(s)+ a_{3}E^{r+1}(T), & \forall0\leq s\leq T, \cr E'(t)\leq\lambda(t) E(t), & \forall t \geq0 . \end{cases} $$
(80)

Then E satisfies the following estimate:

(81)
(82)

where \({\tilde{\lambda}}(t)=\int_{0}^{t}\lambda(\tau) d\tau\), h is defined by (79) with \(\alpha=\frac{1}{E(0)}\) and \(\omega=\frac{1}{a}\) such that

$$ a(s)=\frac{a_{1}(s)+a_{2}(s) (d(s) )^{p}+a_{3}(s) (d(s) )^{r}}{ 1-a_{3}(r+1)\sup_{t\geq 0} \{\lambda(t) \}} $$
(83)

with

$$\begin{aligned} &d(s)=\min \biggl\{E(0) e^{{\tilde{\lambda}}(s)}, \biggl(\frac{b(0)E(0)}{ f_{0}(s)} \biggr)^{{1}/{(r+1)}} \biggr\} ,\\ & \quad f_{0}(s)=e^{-(r+1){\tilde{\lambda}}(s)} \int _{0}^{s}e^{(r+1){\tilde{\lambda}}(\tau)} d\tau \end{aligned} $$

and

$$b(s)=\frac{a_{1}(s)+a_{2}(s)E^{p}(s)+a_{3}(s)E^{r}(s)}{ 1-a_{3}(r+1)\sup_{t\geq 0} \{\lambda(t) \}}, \quad \forall s \geq0. $$

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Benaissa, A., Messaoudi, S.A. (2013). Global Existence and Energy Decay of Solutions for a Nondissipative Wave Equation with a Time-Varying Delay Term. In: Reissig, M., Ruzhansky, M. (eds) Progress in Partial Differential Equations. Springer Proceedings in Mathematics & Statistics, vol 44. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00125-8_1

Download citation

Publish with us

Policies and ethics