Consistency, Truth and Existence

  • Pavel Pudlák
Part of the Springer Monographs in Mathematics book series (SMM)


In the first section we mention the main philosophical approaches in the standard classification: platonism, intuitionism, logicism and formalism. In the second section, we discuss consistency statements, reflection principles and theories obtained by transfinite iterations of these principles. Furthermore, we present some results of the program of using large cardinals to cope with incompleteness in set theory. In the final section, we present the concept of physical natural numbers and attempt to give an alternative formalization of this concept.


Natural Number Large Cardinal Peano Arithmetic Incompleteness Theorem Reflection Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 18.
    Beklemishev, L.D.: A proof-theoretic analysis of collection. Arch. Math. Log. 34(4–5), 216–238 (1998) MathSciNetGoogle Scholar
  2. 22.
    Bernays, P.: Sur le platonism dans les mathematiques. Enseign. Math. 34, 52–69 (1935) Google Scholar
  3. 30.
    Boolos, G.: Logic, Logic, and Logic. Harvard University Press, Cambridge (1998) zbMATHGoogle Scholar
  4. 33.
    Bourgain, J.: On the Fourier-Walsh spectreum of the Moebius function (2011)., arXiv:1112.1423
  5. 34.
    Buss, S.R.: Bounded Arithmetic. Bibliopolis, Naples (1986) zbMATHGoogle Scholar
  6. 41.
    Cheyne, C.: Knowledge, Cause, and Abstract Objects: Causal Objections to Platonism. Kluwer Academic, Dordrecht (2001) CrossRefGoogle Scholar
  7. 42.
    Church, A.: A set of postulates for the foundation of logic (1). Ann. Math. 33, 346–366 (1932) MathSciNetCrossRefGoogle Scholar
  8. 50.
    Cook, S., Nguyen, P.: Logical Foundations of Proof Complexity. ASL Perspectives in Logic. Cambridge University Press, Cambridge (2010) zbMATHCrossRefGoogle Scholar
  9. 54.
    Curry, H.B.: Outlines of a Formalist Philosophy of Mathematics. Studies in Logic and Foundations of Mathematics. North-Holland, Amsterdam (1951) zbMATHGoogle Scholar
  10. 63.
    Detlefsen, M.: Formalism. In: Shapiro, S. (ed.) The Oxford Handbook of Philosophy of Mathematics and Logic, pp. 236–317. Oxford University Press, London (2005) CrossRefGoogle Scholar
  11. 64.
    Dummett, M.: Realism. In: Truth and Other Enigmas, pp. 145–165. Harvard University Press, Cambridge (1978) Google Scholar
  12. 70.
    Feferman, S.: Transfinite recursive progressions of axiomatic theories. J. Symb. Log. 27(3), 259–315 (1962) MathSciNetCrossRefGoogle Scholar
  13. 71.
    Feferman, S.: Systems of predicative analysis. J. Symb. Log. 29(1), 1–30 (1964) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 75.
    Fraenkel, A.A., Bar-Hillel, Y., Levy, A.: Foundations of Set Theory. North-Holland, Amsterdam (1973) zbMATHGoogle Scholar
  15. 76.
    Franzén, T.: Inexhaustibility: A Non-exhaustive Treatment. Lecture Notes in Logic, vol. 16. Association for Symbolic Logic, AK Peters, Wellesley (2004) zbMATHGoogle Scholar
  16. 84.
    Gaifman, H.: Ontology and conceptual framework part I. Erkenntnis 9, 329–353 (1975) CrossRefGoogle Scholar
  17. 85.
    Gaifman, H.: Ontology and conceptual framework part II. Erkenntnis 10, 21–85 (1976) CrossRefGoogle Scholar
  18. 86.
    Gaifman, H.: Ontology and realism in mathematics. Rev. Symb. Log. 5(3), 480–512 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 98.
    Gödel, K.: What is Cantor’s continuum problem? Am. Math. Mon. 54(9), 515–525 (1947) CrossRefGoogle Scholar
  20. 99.
    Gödel, K.: Collected Works: Volume III. Unpublished Essays and Lectures. Feferman, S., Dawson, J.W., Goldfarb, W., Parsons, C., Sieg, W. (eds.). Oxford University Press, London (1995) Google Scholar
  21. 108.
    Green, B.: On (not) computing the Möbius functions using bounded depth circuits. Comb. Probab. Comput. 21(6), 942–951 (2012) zbMATHCrossRefGoogle Scholar
  22. 111.
    Hájek, P., Pudlák, P.: Metamathematics of First Order Arithmetic. ASL Perspectives in Logic. Springer, Berlin (1993) zbMATHGoogle Scholar
  23. 116.
    Hawking, S.: Godel and the end of physics. A public lecture held in 2002.
  24. 122.
    Heyting, A.: Intuitionism: An introduction. Studies in Logic and the Foundations of Mathematics, vol. 16. North-Holland, Amsterdam (1971) zbMATHGoogle Scholar
  25. 125.
    Hilbert, D.: Mathematical problems. Bull. Am. Math. Soc. 8, 437–479 (1902) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 126.
    Hilbert, D.: On the infinite. In: van Heijenoort, J. (ed.) From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, pp. 367–392. Harvard University Press, Cambridge (1967) Google Scholar
  27. 127.
    Hilbert, D.: Die Grundlagen der Mathematik (a lecture given in Hamburg in 1927). English translation “The foundations of mathematics”. In: van Heijenoort, J. (ed.) From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931, pp. 464–479. Harvard University Press, Cambridge (1967) Google Scholar
  28. 157.
    Koellner, P., Woodin, W.H.: Incompatible Omega-complete theories. J. Symb. Log. 74(4), 1155–1170 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 163.
    Krajíček, J.: Forcing with Random Variables. London Math. Soc. Lecture Note Series, vol. 382. Cambridge University Press, Cambridge (2011) zbMATHGoogle Scholar
  30. 165.
    Krajíček, J., Pudlák, P.: On the structure of initial segments of models of arithmetic. Arch. Math. Log. 28, 91–98 (1989) zbMATHCrossRefGoogle Scholar
  31. 168.
    Kreisel, G.: Ordinal logics and the characterization of informal concepts of proof. In: Proc. of the 8th International Congress of Mathematicians, pp. 289–299. Edinburgh University Press, Edinburgh (1958). 1960 Google Scholar
  32. 169.
    Kreisel, G., Levy, A.: Reflection principles and their use for establishing the complexity of axiomatic systems. Z. Math. Log. Grundl. Math. 14, 97–142 (1968) MathSciNetzbMATHCrossRefGoogle Scholar
  33. 183.
    Levy, A., Solovay, R.M.: Measurable cardinals and the continuum hypothesis. Isr. J. Math. 5, 234–248 (1967) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 184.
    Linnebo, Ø.: Platonism in the philosophy of mathematics. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy (2011). Google Scholar
  35. 188.
    Luminet, J.-P., Weeks, J., Riazuelo, A., Lehoucq, R., Uzan, J.-P.: Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background. Nature 425(9), 593–595 (2003) CrossRefGoogle Scholar
  36. 208.
    Newton, I.: Universal Arithmetick: Or, a Treatise of Arithmetical Composition and Resolution. J. Senex, London (1720) Google Scholar
  37. 219.
    Pohlers, W.: Proof Theory. The First Step to Impredicativity. Springer, Berlin (1989) CrossRefGoogle Scholar
  38. 220.
    Poincaré, H.: The Foundations of Science. The Science Press, New York (1908) Google Scholar
  39. 229.
    Pudlák, P.: Randomness, pseudorandomness and models of arithmetic. arXiv:1210.4692
  40. 232.
    Quine, W.V.: From a Logical Point of View: Nine Logico-Philosophical Essays, 2nd edn. Harvard University Press, Cambridge (2003) Google Scholar
  41. 251.
    Russell, B.: The Principles of Mathematics. Cambridge University Press, Cambridge (1903) zbMATHGoogle Scholar
  42. 256.
    Schmerl, U.R.: A fine structure generated by reflection formulas over primitive recursive arithmetic. In: Boffa, M., van Dalen, D., McAloon, K. (eds.) Proc. Logic Colloquium’78, pp. 335–350. North-Holland, Amsterdam (1979) Google Scholar
  43. 281.
    Solovay, R.: Injecting inconsistencies into models of PA. Ann. Pure Appl. Log. 44(1–2), 101–132 (1989) MathSciNetCrossRefGoogle Scholar
  44. 294.
    Turing, A.M.: Systems of logic based on ordinals. Proc. Lond. Math. Soc. s2-45(1), 161–228 (1939) MathSciNetCrossRefGoogle Scholar
  45. 307.
    Weyl, H.: Das Kontinuum. Kritische Untersuchungen über die Grundlagen der Analysis. Veit, Leipzig (1918) Google Scholar
  46. 308.
    Weyl, H.: Mathematics and logic. A brief survey serving as a preface to a review of “The philosophy of Bertrand Russell”. Am. Math. Mon. 53, 2–13 (1946) MathSciNetzbMATHCrossRefGoogle Scholar
  47. 309.
    Woodin, W.H.: The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal. de Gruyter, Berlin (1999) zbMATHCrossRefGoogle Scholar
  48. 310.
    Woodin, W.H.: The continuum hypothesis, I. Not. Am. Math. Soc. 48(6), 567–576 (2001) MathSciNetzbMATHGoogle Scholar
  49. 312.
    Woodin, W.H.: The Continuum Hypothesis and the Ω-Conjecture. Coxeter Lectures, Fields Institute, Toronto (2002) Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Pavel Pudlák
    • 1
  1. 1.ASCRPragueCzech Republic

Personalised recommendations