Skip to main content

Social and Communication Networks

  • Chapter
  • First Online:
Temporal Patterns of Communication in Social Networks

Part of the book series: Springer Theses ((Springer Theses))

  • 966 Accesses

Abstract

As any progress in science, also the current description of social networks has been accomplished one step at a time. Traditionally, the study of social and complex networks has been the territory of graph theory, which allows to define a network for any system by means of the simple representation of a graph. Since the 1950’s real networks have been described as completely random graphs (Bollobás 1985), proposed as the simplest description of connections between entities and which mathematical formulation inheres in the work of Paul Erdös and Alfréd Rény (Erdös and Rényi 1959, 1960). According to this formulation, any member of the network has the same probability to be connected to any one else, thus all members have approximately the same number of connections.

For all practical purposes, our behavior is random. Unpredictable. Episodic. Indeterminable. Unforeseeable. Irregular. There’s only one problem with this assumption. It’s simply wrong.

—Albert-Lázló Barabási.

“Bursts: The Hidden Pattern Behind Everything We Do” (Barabási 2010)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamic L, Adar E (2003) Friends and neighbors on the web. Soc Netw 25(3):211–230

    Article  Google Scholar 

  • Ahn Y-Y, Han SK, Moon S, Jeong H (2007) Analysis of topological characteristics of huge online social networking services. In: Proceedings of the 16th international conference on the, World Wide Web, pp 835–844.

    Google Scholar 

  • Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Upper Saddle River, New Jersey

    MATH  Google Scholar 

  • Aiello L, Barrat A, Cattuto C, Ruffo G, Schifanella R (2010) Link creation and profile alignment in the aNobii social network. In: Proceedings of the sec- ond IEEE international conference on social computing socialCom 2010, Minneapolis, USA.

    Google Scholar 

  • Akoglu L, Dalvi B (2010) Structure, tie persistence and event detection in large phone and SMS networks. In: MLG ’10 Proceedings of the eighth workshop on mining and learning with graphs.

    Google Scholar 

  • Albert R, Jeong H, Barabási A-L (1999) The diameter of the world wide web. Nature 491:130–131

    ADS  Google Scholar 

  • Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  ADS  MATH  Google Scholar 

  • Almaas E, Kovacs B, Viscek T, Oltvai Z, Barabási A-L (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427:839

    Article  ADS  Google Scholar 

  • Amaral LAN, Scala A, Barthélemy M, Stanley H (2000) Classes of small-world networks. Proc Natl Acad Sci U S A 97:11149–11152

    Article  ADS  Google Scholar 

  • Anderson RM, May R (1992) Infectious diseases in humans. Oxford University Press, Oxford

    Google Scholar 

  • Aral S, Walker D (2012) Identifying influential and susceptible members of social networks. Science 337:337–341

    Article  MathSciNet  ADS  Google Scholar 

  • Aral S, Van Alsyne M (2007) Network structure and information advantage. Proceeding of the academy of management conference, Philadelphia, PA, In

    Google Scholar 

  • Arenas A, Duch J, Gómez S, Danon L, Díaz-Guilera A (2010) Communities in complex networks: Identification at different levels. In: Caldarelli G (ed) Enciclopedia of life support system (EOLSS). EOLSS Publishers, Oxford, UK, Developed under the auspices of the Unesco

    Google Scholar 

  • Backstrom L, Boldi P, Rosa M, Ugander J, Vigna S (2012) Four degrees of separation. arXiv:1111.4570v3.

    Google Scholar 

  • Barabási A-L (2005) The origin of bursts and heavy tails in human dynamics. Nat Sci Rep 435:207–211

    Google Scholar 

  • Barabási A-L (2007) The architecture of complexity. IEEE Control Syst Mag 27:33–42

    Article  Google Scholar 

  • Barabási A-L (2010) Bursts: the hidden pattern behind everything we do. Dutton Books, New York

    Google Scholar 

  • Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  MathSciNet  ADS  Google Scholar 

  • Barabási A-L, Jeong H, Ravasz R, Neda Z, Vicsek T, Schubert A (2002) Evolution of the social network of scientific collaborations. Physica A 311:590–614

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Barrat A, Barthélemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci U S A 101:3747

    Article  ADS  Google Scholar 

  • Barthélemy M (2003) Crossover from scale-free to spatial networks. Europhys Lett 6:915

    Article  Google Scholar 

  • Barthélemy M, Gondran B, Guichard E (2003) Spatial structure of the internet traffic. Physica A 319:633642

    Article  Google Scholar 

  • Barthélemy M, Barrat A, Pastor-Satorras R, Vespignani A (2004) Velocity and hierarchical spread of epidemic outbreaks in scale-free networks. Phys Rev Lett 92:178701

    Article  ADS  Google Scholar 

  • Barthélemy M, Barrat A, Pastor-Satorras R, Vespignani A (2005) Characterization and modelling of weighted networks. Physica A 346:34–43

    Article  ADS  Google Scholar 

  • Baym NK, Zhang YB, Lin M (2004) Social interactions across media: interpersonal communication on the internet, face-to-face, and the telephone. New Media Soc 6:299

    Article  Google Scholar 

  • Bliss C, Kloumann I, Harris KD, Danforth C (2012) Twitter reciprocal reply networks exhibit assortativity with respect to happiness. J Comput Sci 3:388–397

    Article  Google Scholar 

  • Blondel V, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech, P10008

    Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424:175

    Article  MathSciNet  ADS  Google Scholar 

  • Boguña M, Pastor-Satorras R, Díaz-Guilera A, Arenas A (2004) Models of social networks based on social distance attachment. Phys Rev E 70:056122

    Article  ADS  Google Scholar 

  • Bollobás B (1985) Random graphs. Academic, New York

    MATH  Google Scholar 

  • Bollobás B, Riordan O, Spencer J, Tusnady G (2001) The degree sequence of a scale-free random graph process. Random Struct Alg 18:279–290

    Article  MATH  Google Scholar 

  • Bonney M (1956) Sociometry and the science of man. Beacon House, New York

    Google Scholar 

  • Braha D, Bar-Yam Y (2008) Time-dependent complex networks: dynamic centrality, dynamic motifs, and cycles of social interaction. In: Gross T, Sayama H (eds) Adaptative networks: Theory, models and applications. Springer, Dordrecht, pp 39–50

    Google Scholar 

  • Burt R (2000) Decay functions. Soc Netw 22:1–28

    Article  Google Scholar 

  • Burt R (2002) Bridge decay. Soc Netw 24:333–363

    Article  Google Scholar 

  • Callaway D, Newman MEJ, Strogatz SH, Watts DJ (2000) Network robustness and fragility: percolation on random graphs. Phys Rev E 85:5468–5471

    ADS  Google Scholar 

  • Candia J, González M, Wang P, Schoenharl T, Madey G, Barabási A-L (2008) Uncovering individual and collective human dynamics from mobile phone records. J Phys A: Math Theor 41:224015

    Article  ADS  Google Scholar 

  • Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton J-F, Vespignani A (2010) Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS ONE 5:e11596

    Article  ADS  Google Scholar 

  • Cho E, Myers S, Leskovec J (2011) Friendship and mobility: user movement in location-based social networks. In: KDD ’11 Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1082–1090.

    Google Scholar 

  • Christakis N, Fowler J (2007) The spread of obesity in a large social network over 32 years. N Engl J Med 357:370–379

    Article  Google Scholar 

  • Christakis NA, Fowler J (2008) The collective dynamics of smoking in a large social network. N Engl J Med 358:2249–2258

    Article  Google Scholar 

  • Clauset A, Shalizi C, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Review 51:661–703

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Colizza V, Barrat A, Barthélemy M, Vespignani A (2006) The role of the airline transportation network in the prediction and predictability of global epidemics. Proc Natl Acad Sci U S A 103:2015–2020

    Article  ADS  Google Scholar 

  • Costa LDF, Rodrigues FA, Travieso G (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56:167–242

    Article  ADS  Google Scholar 

  • Crandall D, Cosley D, Huttenlocher D, Kleinberg J, Suri S (2008) Feed- back effects between similarity and social influence in online communities. In KDD 08: proceeding of the 14th ACM SIGKDD international conference on knowledge discovery and data mining New York, NY, USA, pp 160–168.

    Google Scholar 

  • Cranshaw J, Toch E, Hong JI, Kitturr A, Sadeh N (2010) Bridging the gap between physical location and online social networks. In: 12th ACM international conference on ubiquitous, computing, pp 119–128.

    Google Scholar 

  • Csermely P (2004) Strongs links are important, but weak links stabilize them. Trends Biochem Sci 29:331

    Article  Google Scholar 

  • Danon L, Arenas A, Díaz-Guilera A (2008) Impact of community structure on information transfer. Phys Rev E 77:036103

    Article  ADS  Google Scholar 

  • De Choudhury M, Mason WA, Hofman J, Watts DJ (2010) Inferring relevant social networks from interpersonal communication. In: WWW ’10 Proceedings of the 19th international conference on, World Wide Web, pp 301–310.

    Google Scholar 

  • Dodds P, Muhamad R, Watts DJ (2003) An experimental study of search in global social networks. Science 301:827–829

    Article  ADS  Google Scholar 

  • Dodds P, Watts DJ (2003) Information exchange and the robustness of organizational networks. Proc Natl Acad Sci U S A 100:12516–12521

    Article  ADS  Google Scholar 

  • Dorogovtesev S, Mendes JFF (2001) Effect of the accelerating growth of communication networks on their structure. Phys Rev E 63:025101

    Article  ADS  Google Scholar 

  • Dorogovtsev SN, Mendes JFF, Samukhin AN (2000) Structure of growing networks with preferential linking. Phys Rev Lett 85:4633–4636

    Article  ADS  Google Scholar 

  • Dorogovtsev SN, Mendes JFF (2002) Evolution of networks. Adv Phys 51:1079–1187

    Article  ADS  Google Scholar 

  • Dunbar R (1992) Neocortex size as a constraint on group size in primated. J Hum Evol 22:469

    Article  Google Scholar 

  • Eagle N, Pentland A, Lazer D (2009) Inferring friendship network structure by using mobile phone data. Proc Natl Acad Sci U S A 106(36):15274–15278

    Article  ADS  Google Scholar 

  • Eagle N, Macy M, Claxton R (2010) Network diversity and economic development. Science 328:5981

    Article  MathSciNet  Google Scholar 

  • Ebel H, Mielsch L, Bornholdt S (2002) Scale-free topology of e-mail networks. Phys Rev E 66:035103

    Article  ADS  Google Scholar 

  • Ebel H, Davidsen J, Bornholdt S (2002) Dynamics of social networks. Complexity 8:24–27

    Article  MathSciNet  Google Scholar 

  • Eckmann J-P, Moses E, Sergi D (2004) Entropy of dialogues creates coherent structures in e-mail traffic. Proc Natl Acad Sci U S A 40:14333–14337

    Article  MathSciNet  ADS  Google Scholar 

  • Erdös P, Rényi A (1959) On random graphs I. Publ Math Debrecen 6:290–297

    MathSciNet  MATH  Google Scholar 

  • Erdös P (1960) On the evolution of random graph. Publ Math Inst Hungarian Acad 5:17–61

    MATH  Google Scholar 

  • Everitt B (1974) Cluster analysis. John Wiley, New York

    Google Scholar 

  • Faloutsos M, Faloutsos P (1999) On relationships of the internet topology. In SIGCOMM Comput Com 29:251–262

    Article  Google Scholar 

  • Feld S (1991) Why your friends have more friends than you do. Am J Sociol 95:1464–1477

    Article  Google Scholar 

  • Ferrara E (2011) A large-scale community structure analysis in Facebook. arXiv:1106.2503v3.

    Google Scholar 

  • Ferrara E (2012) Topological features of online, social networks. arXiv:1202.0331v1.

    Google Scholar 

  • Friedkin N, Johnsen E (1990) Social influence and opinions. J Math Sociol 15:193–206

    Article  MATH  Google Scholar 

  • Gaito S, Zignani M, Rossi G, Sala A, Wang X, Zheng H, Zhao B (2012) First ACM International Workshop on Hot Topics on Interdisciplinary Social Networks Research. Beijing, China

    Google Scholar 

  • Gilbert E, Karahalios K (2009) Predicting tie strength with social media. In: CHI ’09 Proceedings of the 27th international conference on human factors in, computing systems, pp 211–220.

    Google Scholar 

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci U S A 99:8271–8276

    Article  MathSciNet  Google Scholar 

  • Goh K-I, Barabási A-L (2008) Burstiness and memory in complex systems. Europhys Lett 81:48002

    Article  ADS  Google Scholar 

  • Goh K-I, Kahng B, Kim D (2001) Universal behavior of load distribution in scale-free networks. Phys Rev Lett 87:278701

    Article  ADS  Google Scholar 

  • Goh K-I, Kahng B, Kim D (2002) Fluctuation-driven dynamics of the internet topology. Phys Rev E 88:108701

    Google Scholar 

  • Golder SA, Wilkinson D, Huberman BA (2007) Rhythms of social interaction: Messaging within a massive online network. In , Steinfield C, Pentland B, Ackerman M, Contractor N (eds) Proceedings of third international conference on communities and technologies , pp 41–66

    Google Scholar 

  • Gómez-Gardeñes J, Moreno Y (2004) Local versus global knowledge in the Barabasi-Albert scale-free network model. Phys Rev E 69:37103

    Article  Google Scholar 

  • Gonçalves B, Perra N, Vespignani A (2011) Modeling users’ activity on Twitter networks: validation of Dunbar’s number. PLoS ONE 6(8):e22656

    Article  Google Scholar 

  • González M, Hidalgo C, Barabási A-L (2008) Understanding individual human mobility patterns. Nature 453(7196):779–782

    Article  ADS  Google Scholar 

  • Grabowicz P, Ramasco J, Moro E, Pujol J, Eguiluz V (2012) Social features of online networks: the strength of intermediary ties in online social media. PLoS ONE 7(1):e29358

    Article  ADS  Google Scholar 

  • Granovetter M (1973) The strength of weak ties. Am J Sociol 78:1360–1380

    Article  Google Scholar 

  • Greene J (1997) Production and inventory control handbook, Tercera edn. McGraw-Hill, New York

    Google Scholar 

  • Guare J (1990) Six degree of separation: a play. Random House, New York

    Google Scholar 

  • Guimerá R, Danon L, Díaz-Guilera A, Giralt F, Arenas A (2003) Self-similar community structure in organisations. Phys Rev E 68:065103

    Article  ADS  Google Scholar 

  • Guimerá R, Mossa S, Turtschi A, Amaral L (2005) The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc Natl Acad Sci U S A 102:7794

    Article  ADS  MATH  Google Scholar 

  • Guimerá R, Uzzi B, Spiro J, Amaral LA (2005) Team assembly mechanisms determine collaboration network structure and team performance. Science 308(5722):697–702

    Article  ADS  Google Scholar 

  • Guimerá R, Danon L, Díaz-Guilera A, Giralt F, Arenas A (2006) The real communication network behind the formal chart: community structure in organizations. J Econ Behav Organ 61:653–667

    Article  Google Scholar 

  • Haight FA (1967) Handbook of the poisson distribution. Wiley, New York

    MATH  Google Scholar 

  • Hidalgo C, Rodriguez-Sickert C (2008) The dynamics of a mobile phone network. Phys A 387:3017

    Article  Google Scholar 

  • Holme P, Kim BJ, Yoon CN, Han SK (2002) Attack vulnerability of complex networks. Phys Rev E 65:056109

    Article  ADS  Google Scholar 

  • Holme P (2002) Edge overload breakdown in evolving networks. Phys Rev E 66:036119

    Article  ADS  Google Scholar 

  • Holme P, Edling C, Liljeros F (2004) Structure and time-evolution of an internet dating community. Soc Netw 26:155–174

    Article  Google Scholar 

  • Holme P (2005) Network reachability of real-world contact sequences. Phys Rev E 71:046119

    Article  ADS  Google Scholar 

  • Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519:97–125

    Article  ADS  Google Scholar 

  • Huberman BA, Adamic L (1999) Internet-growth dynamics of the World-Wide Web. Nature 401:131

    ADS  Google Scholar 

  • Huberman B, Romero D, Wu F (2009) Social networks that matter: Twitter under the microscope. First Monday 14(1):1–9

    Google Scholar 

  • Ibarra H (2002) Homophily differential returns: sex differences in network structure and access in an advertising firm. Adm Sci Q 37:422

    Article  Google Scholar 

  • Iribarren J, Moro E (2009) Impact of human activity patterns on the dynamics of information diffusion. Phys Rev Lett 103:038702

    Article  ADS  Google Scholar 

  • Iribarren J, Moro E (2011a) Affinity paths and information diffusion in social networks. Soc Netw 33:134–142

    Article  Google Scholar 

  • Iribarren J, Moro E (2011b) Branching dynamics of viral information spreading. Phys Rev E 84:046116

    Article  ADS  Google Scholar 

  • Isella L, Stehlé J, Barrat A, Cattuto C, Pinton J-F, Van den Broeck W (2011) What’s in a crowd? Analysis of face-to-face behavioral networks. J Theor Biol 166:166–180

    Article  Google Scholar 

  • Jeong H, Tombor B, Albert R, Oltvai Z-N, Barabási A-L (2000) The large-scale organization of metabolic networks. Nature 407:651–655

    Article  ADS  Google Scholar 

  • Jo H-H, Karsai M, Kertész J, Kaski K (2012) Circadian pattern and burstiness in mobile phone communication. New J Phys 14:013055

    Article  Google Scholar 

  • Karsai M, Kivelä M, Pan R, Kaski K, Kertész J, Barabási A-L (2011) Small but slow world: how network topology and burstiness slow down spreading. Phys Rev E 83:025102(R).

    Google Scholar 

  • Kempe D, Kleinberg J, Kumar A (2002) Connectivity and inference problems for temporal networks. J Comput Syst Sci 64(4):820–842

    Article  MathSciNet  MATH  Google Scholar 

  • Kivran-Swaine F, Govindan P, Naaman M (2011) The impact of network structure on breaking ties in online social networks: unfollowing on twitter. In: CHI ’11 Proceedings of the 2011 annual conference on human factors in computing systems.

    Google Scholar 

  • Kleinberg J (2000) Navigation in a small world. Nature 406:845

    Article  ADS  Google Scholar 

  • Kleinberg J (2008) The convergence of social and technological networks. Commun ACM 51(11):66–72

    Article  Google Scholar 

  • Korte C, Milgram S (1970) Acquaintance linking between white and negro populations: application of the small world problem. J Pers Soc Psychol 15:101–118

    Article  Google Scholar 

  • Kossinets G, Watts DJ (2006) Empirical analysis of an evolving social network. Science 311:5757

    Article  MathSciNet  Google Scholar 

  • Kossinets G, Kleinberg J, Watts DJ (2008) The structure of information pathways in a social communication network. In: Proceedings of ACM SIGKDD ’08, pp 435–443.

    Google Scholar 

  • Kostakos V (2009) Temporal graphs. Physica A 388(6):1007–1023

    Article  MathSciNet  ADS  Google Scholar 

  • Kovanen L, Karsai M, Kaski K, Kertész J, Saramäki J (2011) Temporal motifs in time-dependent networks. J Stat Mech: Theory Exp 11:11

    Google Scholar 

  • Kumpula J, Onnela J-P, Saramäki J, Kertész J, Kaski K (2009) Model of community emergence in weighted networks. Comp Phys Comm 180:517

    Article  ADS  MATH  Google Scholar 

  • Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social network or a news media? In: Proceedings of the 19th international conference on, World wide web, pp 591–600.

    Google Scholar 

  • Lambiotte R, Blondel V, de Kerchove C, Huens E, Prieur C, Smoreda Z, Van Dooren P (2008) Geographical dispersal of mobile communication networks. Phys A 387:5317–5325

    Article  Google Scholar 

  • Lancichinetti A, Kivelä M, Saramäki J, Fortunato S (2010a) Characterizing the community structure of complex networks. PLoS ONE 5(8):e11976

    Article  ADS  Google Scholar 

  • Lancichinetti A, Radicchi F, Ramasco J, Fortunato S (2010b) Finding statistically significant communities in networks. PLoS ONE 6:e18961

    Article  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701

    Article  ADS  Google Scholar 

  • Latora V, Marchiori M (2003) Economic small-world behavior in weighted networks. Eur Phys J B 32:249

    Article  ADS  Google Scholar 

  • Lazarsfeld P, Merton R (1954) Friendship as a Social Process: A Substantive and Methodological Analysis. In: Berger M, Abel T, Page CH (eds) Freedom and control in modern society. Van Nostrand, New York, pp 18–66

    Google Scholar 

  • Lazer D, Pentland A, Adamic L, Aral S, Barabási A-L, Brewer N, Christakis NA, Contractor N, Fowler J, Gutmann M, Jebara T, King G, Macy M, Roy D, Van Alsyne M (2009) Computational social science. Science 323:721–723

    Article  Google Scholar 

  • Lee C, Scherngell T, Barber MJ (2009) Real-world separation effects in an online social network. Soc Netw 33:2

    Google Scholar 

  • Lee S-H, Kim P-J, Ahn Y-Y, Jeong H (2010) Googling social interactions: web search engine based social network construction. PLoS ONE 5(7):e11233

    Article  ADS  Google Scholar 

  • Leskovec J, Lang KJ, Dasgupta A, Mahoney M (2009) Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Math 61(1):29–123

    Article  MathSciNet  Google Scholar 

  • Lewis K, Kaufman J, Gonzales M, Wimmer A, Christakis NA (2008) Tastes, ties, and time: a new social network dataset using Facebook.com. Soc Netw 30:330–342

    Article  Google Scholar 

  • Liben-Nowell D, Novak J, Kumar R, Raghavan P, Tomkins A (2005) Geographic routing in social networks. Proc Natl Acad Sci U S A 102:623–628

    Article  Google Scholar 

  • Malmgren RD, Stouffer DB, Motter AE, Amaral LAN (2008) A poissonian explanation for heavy tails in e-mail communication. Proc Natl Acad Sci U S A 105:18153–18158

    Article  ADS  Google Scholar 

  • Mangan S (2003) Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A 100:11980–11985

    Article  ADS  Google Scholar 

  • Martin JL, Yeung K-T (2006) Persistence of close personal ties over a 12-year period. Soc Netw 28:331–362

    Article  Google Scholar 

  • McDaid A, Hurley N (2010) Detecting highly overlapping communities with model-based overlapping seed expansion. In: Proceedings of the ASONAM10.

    Google Scholar 

  • McPherson J, Smith-Lovin L, Cook J (2001) Birds of a feather: homophily in social networks. Ann Rev Sociol 27:415–444

    Article  Google Scholar 

  • Milgram S (1967) The small world problem. Psychol Today 1:60–67

    Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S, Kashan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824

    Article  ADS  Google Scholar 

  • Miritello G, Lara R, Cebrián M, Moro E (2012a) Limited communication capacity unveils strategies for human interaction, arXiv:1304.1979.

    Google Scholar 

  • Miritello G, Moro E, Lara R (2011) Dynamical strength of social ties in information spreading. Phys Rev E 83:045102(R).

    Google Scholar 

  • Miritello G, Moro E, Lara R, Martinez R, Belchamber J, Roberts S, Dunbar R (2012b) Time as a limited resource: communication strategy in mobile phone networks. Social Networks, 35, 89-95.

    Google Scholar 

  • Mislove A, Marcon M, Gummadi K, Druschel P, Bhattacharjee B (2007) Measurement and analysis of online social networks. In: Proceedings of the 7th ACM conference on internet, measurement, pp 29–42.

    Google Scholar 

  • Mollica K, Gray B, Trevino L (2003) Racial homophily and its persistence in newcomers’ social networks. Organ Sci 14:123–136

    Article  Google Scholar 

  • Moody J (2002) The importance of relationship timing for diffusion. Soc Forces 81:25–56

    Article  Google Scholar 

  • Moreno Y, Pastor-Satorras R, Vespignani A (2002) Epidemic outbreaks in complex heterogeneous networks. Eur Phys J B 26:521–529

    ADS  Google Scholar 

  • Nanavati AA, Singh R, Chakraborty D, Dasgupta K, Mukherjea S, Das G, Gurumurthy S, Joshi A (2008) Analyzing the structure and evolution of massive telecom graphs. IEEE Trans Knowl Data Eng 20:5

    Article  Google Scholar 

  • Newman MEJ (2001a) Scientific collaboration networks: I. Network construction and fundamental results. Phys Rev E 64:016131

    Article  ADS  Google Scholar 

  • Newman MEJ (2002b) The spread of epidemic disease on networks. Phys Rev E 66:016128

    Article  MathSciNet  ADS  Google Scholar 

  • Newman MEJ, Forrest S, Balthrop J (2002) Email networks and the spread of computer viruses. Phys Rev E 66:035101

    Article  ADS  Google Scholar 

  • Newman MEJ (2002a) Assortative mixing in networks. Phys Rev E 89:208701

    ADS  Google Scholar 

  • Newman MEJ (2003a) Properties of highly clustered networks. Phys Rev E 68:026126

    Article  MathSciNet  ADS  Google Scholar 

  • Newman MEJ, Park J (2003) Why social networks are different from other types of networks. Phys Rev E 68:036122

    Article  ADS  Google Scholar 

  • Newman MEJ (2003b) The structure and function of complex networks. SIAM Review 45:167–256

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026113

    Article  ADS  Google Scholar 

  • Oliveira J, Barabási A-L (2005) Human dynamics: Darwin and Einstein correspondence patterns. Nature 437:1251

    Article  ADS  Google Scholar 

  • Onnela J, Chakraborti A, Kaski K, Kertész J, Kanto A (2003) Dynamics of market correlations: taxonomy and portfolio analysis. Phys Rev E 68:056110

    Article  ADS  Google Scholar 

  • Onnela J, Saramäki J, Kertész J, Kaski K (2005) Intensity and coherence of motifs in weighted complex networks. Phys Rev E 71:065103

    Article  ADS  Google Scholar 

  • Onnela J-P, Saramäki J, Hyvönen J, Szabó Z, Argollo de Menezes M, Kaski K, Barabási A-L, Kertész J (2007a) Analysis of a large-scale weighted network of one-to-one human communication. New J Phys 9:179

    Article  Google Scholar 

  • Onnela J-P, Saramäki J, Hyvönen J, Szabó Z, Lazer D, Kaski K, Kertész J, Barabási A-L (2007b) Structure and tie strengths in mobile communication networks. Proc Natl Acad Sci U S A 104:7332

    Article  ADS  Google Scholar 

  • Onnela J-P, Arbesman S, González M, Barabási A-L, Christakis NA (2011) Geographic constraints on social network groups. PLoS ONE 6(4):e16939

    Article  ADS  Google Scholar 

  • Palla G, Barabási A-L, Tamás V (2007a) Community dynamics in social networks. Noise Stochast Complex Syst Finan 6601:660106

    Article  Google Scholar 

  • Palla G, Barabási A-L, Vicsek T (2007b) Quantifying social group evolution. Nature 446:664–667

    Article  ADS  Google Scholar 

  • Pan R, Saramäki J (2011) Path lengths, correlations, and centrality in temporal networks. Phys Rev E 84:016105

    Article  ADS  Google Scholar 

  • Pastor-Satorras R, Vespignani A (2001b) Epidemic spreading in scale-free networks. Phys Rev Lett 86:3200–3203

    Article  ADS  Google Scholar 

  • Pastor-Satorras R, Vespignani A (2002) Immunization of complex networks. Phys Rev E 65:036104

    Article  ADS  Google Scholar 

  • Pastor-Satorras R, Vespignani A (2004) Evolution and structure of the internet: a statistical physics approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Quattrocchi W, Conte R, Lodi E (2010) Simulating opinion dynamics in heterogeneous communication systems. In: Proceedings of 7th european conference on complex systems (ECCS), pp 70–85.

    Google Scholar 

  • Raeder T, Lizardo O, Chawla N, Hachen D (2011) Predictors of short-term decay of cell phone contacts in a large scale communication network. Soc Netw 33:245–257

    Article  Google Scholar 

  • Raghavan U, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76:036106

    Article  ADS  Google Scholar 

  • Reynolds P (2003) Call center staffing. The Call Center School Press, London

    Google Scholar 

  • Roberts S (2010) Constraints on social networks. Proc Br Acad 158:115–134

    Google Scholar 

  • Rocha L, Liljeros F, Holme P (2010) Information dynamics shape the sexual networks of internet-mediated prostitution. Proc Natl Acad Sci U S A 107:5706–5711

    Article  ADS  MATH  Google Scholar 

  • Romero D, Meeder B, Barash V, Kleinberg J (2011) Maintaining ties on social media sites: the competing effect of balance, exchange and betweenness. In: Proceedings of the ICWSM’11, fifth international AAAI conference on weblogs and social media.

    Google Scholar 

  • Rosvall M, Bergstrom C (2008) Maps of information flow reveal community structure in complex networks. Proc Natl Acad Sci U S A 105:1118–1123

    Article  ADS  Google Scholar 

  • Rybski D., Buldyrev SV, Havlin S, Liljeros F, Makse HA (2010) Communication activity: temporal correlations, clustering, and, growth. arXiv:1002.0216v1.

    Google Scholar 

  • Rybski D, Buldyrev SV, Havlin S, Liljeros F, Makse HA (2009) Scaling laws of human interaction activity. Proc Natl Acad Sci U S A 106:12640

    Article  ADS  Google Scholar 

  • Saramäki J, Kivelä M, Onnela J-P, Kaski K, Kertész J (2007) Generalizations of the clustering coefficient to weighted complex networks. Phys Rev E 75:027105

    Article  ADS  Google Scholar 

  • Sarkar P, Moore A (2005) Dynamic social network analysis using latent space models, Special edn. Link Mining, In SIGKDD Explorations

    Google Scholar 

  • Scellato S, Noulas A, Lambiotte R, Mascolo C (2011) Socio-spatial properties of online location-based social networks. In: ICWSM’11, Fifth international AAAI conference on weblogs and social media.

    Google Scholar 

  • Scott J (2000) Social network analysis: a handbook. Sage Publications, London

    Google Scholar 

  • Snijders, Tom A.B, The Statistical Evaluation of Social Network Dynamics. pp. 361-395 in Sociological Methodology (2001), edited by M.E. Sobel and M.P. Becker. Boston and London: Basil Blackwell.

    Google Scholar 

  • Solé RV, Pastor-Satorras R, Smith E, Kepler TB (2002) A model of large-scale proteome evolution. Adv Complex Syst 5:43

    Article  MATH  Google Scholar 

  • Sporns O (2003) Network analysis, complexity, and brain function. Complexity 8:56

    Article  MathSciNet  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Article  ADS  Google Scholar 

  • Szabó G, Barabási A-L (2006) Network effects in service usage.arXiv:physics/0611177.

    Google Scholar 

  • Tang J, Musolesi M, Mascolo C, Latora V (2010) Characterising temporal distance and reachability in mobile and online social networks. ACM SIGCOMM Comput Commun Rev 40:1

    Article  Google Scholar 

  • Tang J, Musolesi M, Mascolo C, Latora V (2009) Temporal distance metrics for social network analysis. In: Proceedings of the 2nd ACM SIGCOMM workshop on online social networks (WOSN’09), Barcelona, Spain.

    Google Scholar 

  • Tang W, Zhuang H, Tang J (2011) Learning to infer social ties in large networks. In: Proc. ECML PKDD’11. Proceedings of the 2011 european conference on machine learning and knowledge discovery in databases, vol Part III. pp 381–397.

    Google Scholar 

  • Tantipathananand C, Berger-Wolf T, Kempe D (2007) A framework for community identification in dynamic social networks. In: Proc. KDD ’07 Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, pp 717–726.

    Google Scholar 

  • Toivonen R, Onnela J-P, Saramäki J, Hyvönen J, Kaski K (2006) A model for social networks. Physica A 371:851

    Article  ADS  Google Scholar 

  • Toivonen R, Kumpula J, Saramäki J, Onnela J-P, Kertész J, Kaski K (2007) The role of edge weights in social networks: modelling structure and dynamics. In: Proceedings of SPIE: noise and stochastics in complex systems and finance, Proc. of SPIE 6601, 660110.

    Google Scholar 

  • Ugander J, Karrer B, Backstrom L, Marlow C (2011) The anatomy of the facebook social graph. preprint:arXiv:1111.4503v1.

    Google Scholar 

  • Valverde S, Solé RV (2005) Network motifs in computational graphs: a case study in software architecture. Phys Rev E 72:026107

    Article  ADS  Google Scholar 

  • Vázquez A, Flammini A, Maritan A, Vespignani A (2003) Modeling of protein interaction networks. ComPlexUs 1:38

    Article  Google Scholar 

  • Vázquez A, Dobrin R, Sergi D, Eckmann J-P, Oltvai Z-N, Barabási A-L (2004) The topological relationship between the large-scale attributes and local interaction patterns of complex networks. Proc Natl Acad Sci U S A 101:17940–17945

    Article  ADS  Google Scholar 

  • Vázquez A, Oliveira J, Dezsö Z, Goh K-I, Kondor I, Barabási A-L (2006) Modeling bursts and heavy tails in human dynamics. Phys Rev E 73:036127

    Article  ADS  Google Scholar 

  • Vázquez A, Rácz B, Lukács A, Barabási A-L (2007) Impact of non-Poissonian activity patterns on spreading processes. Phys Rev Lett 98:158702

    Article  ADS  Google Scholar 

  • Volkovich Y, Scellato S, Laniado D, Mascolo C, Kaltenbrunner A (2012) The length of bridge ties: structural and geographic properties of online social interactions. Proceedings of the sixth international AAAI conference on weblogs and social media, In

    Google Scholar 

  • Waleaevens J, Demoor T, Maertens T, Bruneel H (2012) Stochastic queuing-theory approach to human dynamics. Phys Rev E 85:021139

    Article  ADS  Google Scholar 

  • Wasserman S, Faust K (1994) Social networks analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  ADS  Google Scholar 

  • Watts DJ (1999) Small worlds: the dynamics of networks between order and randomness. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Watts DJ (2004) The “new” science of networks. Annu Rev Sociol 30:243–270

    Article  Google Scholar 

  • Wellman B, Wortley S (1990) Different strokes from different folks: community ties and social support. Am J Sociol 96:558–588

    Article  Google Scholar 

  • Wellman B, Salaff J, Dimitrova L, Garton L, Gulia M, Haythornthwaite C (1996) Computer networks as social networks: collaborative work, telework, and virtual community. Annu Rev Sociol 22:213

    Article  Google Scholar 

  • Wellman B (2001) Computer networks as social networks. Science 293:2031

    Article  ADS  Google Scholar 

  • Wellman B (2007) The network is personal: introduction to a special issue of social networks. Soc Netw 29(3):349–356

    Article  Google Scholar 

  • Wellman B, Haythornthwaite C (2003) The internet in everyday life. Blackwell, Oxford

    Google Scholar 

  • West D (1995) Introduction to graph theory. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Wilkinson D, Huberman B (2004) A method for finding communities of related genes. Proc Natl Acad Sci U S A 101:5241–5248

    Article  ADS  Google Scholar 

  • Wu T, Zhoud C, Xiaob J, Kurthsa J, Schellnhubera H (2010) Evidence for a bimodal distribution in human communication. Proc Natl Acad Sci U S A 107:18803

    Article  ADS  Google Scholar 

  • Wuchty S (2009) What is a social tie? Proc Natl Acad Sci U S A 106:15099–15100

    Article  ADS  Google Scholar 

  • Wuchty S, Uzzi B (2011) Human communication dynamics in digital footsteps: a study of the agreement between self-reported ties and email networks. PLoS ONE 6(11):e26972

    Article  ADS  Google Scholar 

  • Yook S, Jeong J, Barabási A-L, Tu Y (2001) Weighted evolving networks. Phys Rev Lett 86:5835

    Article  ADS  Google Scholar 

  • Zhao Q, Oliver N (2010) Communication motifs: a novel approach to characterize mobile communications. In: NetMob2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Miritello .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miritello, G. (2013). Social and Communication Networks. In: Temporal Patterns of Communication in Social Networks. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00110-4_2

Download citation

Publish with us

Policies and ethics