Skip to main content

Introduction and Motivations

  • Chapter
  • First Online:
Temporal Patterns of Communication in Social Networks

Part of the book series: Springer Theses ((Springer Theses))

  • 880 Accesses

Abstract

Uncovering the patterns that characterize human behavior is not only one of the main challenges of contemporary science, but also of outstanding importance for the understanding and modeling of many real phenomena which dynamics is related to the way in which people are connected and interact and to the mechanisms that govern the dynamics of such interactions.

Science advances whenever we can take something that was once invisible and make it visible; and this is now taking place with regard to social networks and social processes. —Jon Kleinberg.

“The Convergence of Social and Technological Networks” (Kleinberg 2008)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamic L, Glance N (2005) The political blogosphere and the 2004 U.S. election: divided they blog. In: LinkKDD ’05 Proceedings of the 3rd international workshop on link, discovery. ACM, New York, pp 36–43

    Google Scholar 

  • Albert R, Jeong H, Barabási A-L (1999) The diameter of the world wide web. Nature 1999(491):130–131

    ADS  Google Scholar 

  • Aral S, Van Alsyne M (2007) Network structure and information advantage. In: Proceeding of the academy of management conference, Philadelphia, PA

    Google Scholar 

  • Barabási A-L (2003) Linked, the new science of networks: how everything is connected to everything else and what it means. Plume Books, New York

    Google Scholar 

  • Barabási A-L (2010) Bursts: the hidden pattern behind everything we do. Dutton Books, New York

    Google Scholar 

  • Barabási A-L, Albert R, Jeong H (2000) Scale-free characteristics of random networks: the topology of the world-wide web. Physica A 281:1–4

    Article  MathSciNet  Google Scholar 

  • Barabási A-L, Jeong H, Ravasz R, Neda Z, Vicsek T, Schubert A (2002) Evolution of the social network of scientific collaborations. Phys A 311:590–614

    Article  MathSciNet  MATH  Google Scholar 

  • Barabási A-L (2005) The origin of bursts and heavy tails in human dynamics. Nat Sci Rep 435:207–211

    Google Scholar 

  • Barrat A, Barthélemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci USA 101:3747

    Article  ADS  Google Scholar 

  • Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424:175

    Article  MathSciNet  ADS  Google Scholar 

  • Buchanan M (2002) Small world: uncovering nature’s hidden networks. Weidenfeld and Nicholson, London

    Google Scholar 

  • Burt R (2000) Decay functions. Soc Netw 22:1–28

    Article  Google Scholar 

  • Colizza V, Barrat A, Barthélemy M, Vespignani A (2007) Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study. BMC Med 5:34

    Article  Google Scholar 

  • Díaz-Guilera A (2007) Complex networks: statics and dynamics. In: AIP conference proceedings, advanced summer school in physics 2006: frontiers in contemporary physics: EAV06, vol 885, pp 107–128

    Google Scholar 

  • Díaz-Guilera A, Sergio L, Arenas A (2009) Propagation of innovation in complex patterns of interaction. In: Pyka A, Scharnhorst A (eds) Innovation networks: new approaches in modeling and analyzing, Springer, Berlin

    Google Scholar 

  • Domingos P, Richardson M (2001) Mining the network value of customers. In: KDD ’01 Proceedings of the 7th ACM SIGKDD international conference on knowledge discovery and data mining. ACM Press, New York, pp 57–66

    Google Scholar 

  • Ebel H, Mielsch L, Bornholdt S (2002) Scale-free topology of e-mail networks. Phys Rev E 66:035103

    Article  ADS  Google Scholar 

  • Eckmann J-P, Moses E, Sergi D (2004) Entropy of dialogues creates coherent structures in e-mail traffic. Proc Natl Acad Sci USA 40:14333–14337

    Article  MathSciNet  ADS  Google Scholar 

  • Eubank S, Guclu H (2004) Modeling disease outbreaks in realistic urban social networks. Nature 429:180–184

    Article  ADS  Google Scholar 

  • Faloutsos M, Faloutsos P, Faloutsos C (1999) On relationships of the internet topology. In: SIGCOMM computer communication, vol 29. ACM, New York, pp 251–262

    Google Scholar 

  • Freeman LC (1996) Some antecedents of social network analysis. Connections 19(1):39–42

    Google Scholar 

  • Giles J (2012) Computational social science: making the links. Nature 488:448

    Article  ADS  Google Scholar 

  • González M, Barabási A-L (2007) Complex networks: from data to models. Nat Phys 3:224–225

    Article  Google Scholar 

  • Grabowicz P, Ramasco J, Moro E, Pujol J, Eguiluz V (2012) Social features of online networks: the strength of intermediary ties in online social media. PLoS ONE 7(1):e29358

    Article  ADS  Google Scholar 

  • Gross R, Acquisti A (2005) Information revelation and privacy in online social networks. In: WPES ’05 Proceedings of the 2005 ACM workshop on privacy in the electronic society, New York, pp 71–80

    Google Scholar 

  • Guimerá R, Danon L, Díaz-Guilera A, Giralt F, Arenas A (2006) The real communication network behind the formal chart: community structure in organizations. J Econ Behav Organ 61:653–667

    Article  Google Scholar 

  • Haight FA (1967) Handbook of the poisson distribution. Wiley, New York

    MATH  Google Scholar 

  • Hidalgo C, Rodriguez-Sickert C (2008) The dynamics of a mobile phone network. Phys A 387:3017

    Article  Google Scholar 

  • Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519:97–125

    Article  ADS  Google Scholar 

  • Iribarren J, Moro E (2009) Impact of human activity patterns on the dynamics of information diffusion. Phys Rev Lett 103:038702

    Article  ADS  Google Scholar 

  • Karsai M, Kivelä M, Pan R, Kaski K, Kertész J, Barabási A-L (2011) Small but slow world: how network topology and burstiness slow down spreading. Phys Rev E 83:025102(R)

    Google Scholar 

  • Kleinberg J (2008) The convergence of social and technological networks. Commun ACM 51(11):66–72

    Article  Google Scholar 

  • Kossinets G, Watts DJ (2006) Empirical analysis of an evolving social network. Science 311:5757

    Article  MathSciNet  Google Scholar 

  • Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social network or a news media? In: Proceedings of the 19th international conference on, world wide web. ACM, New York, pp 591–600

    Google Scholar 

  • Lazer D, Pentland A, Adamic L, Aral S, Barabási A-L, Brewer N, Christakis NA, Contractor N, Fowler J, Gutmann M, Jebara T, King G, Macy M, Roy D, Van Alsyne M (2009) Computational social science. Science 323:721–723

    Article  Google Scholar 

  • Lloyd AL, May R (2001) How viruses spread among computers and people. Science 292:1316–1317

    Article  Google Scholar 

  • Malmgren RD, Stouffer DB, Motter AE, Amaral LAN (2008) A poissonian explanation for heavy tails in e-mail communication. Proc Natl Acad Sci USA 105:18153–18158

    Article  ADS  Google Scholar 

  • Miritello G, Moro E, Lara R (2011) Dynamical strength of social ties in information spreading. Phys Rev E 83:045102(R)

    Google Scholar 

  • Nanavati AA, Singh R, Chakraborty D, Dasgupta K, Mukherjea S, Das G, Gurumurthy S, Joshi A (2008) Analyzing the structure and evolution of massive telecom graphs. IEEE Trans Knowl Data Eng 20:5

    Article  Google Scholar 

  • Newman MEJ (2001b) The structure of scientific collaboration networks. Proc Natl Acad Sci USA 98:404–409

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Newman MEJ, Park J (2003) Why social networks are different from other types of networks. Phys Rev E 68:036122

    Article  ADS  Google Scholar 

  • Newman MEJ (2003b) The structure and function of complex networks. SIAM Rev 45:167–256

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Onnela J, Chakraborti A, Kaski K, Kertész J, Kanto A (2003) Dynamics of market correlations: taxonomy and portfolio analysis. Phys Rev E 68:056110

    Article  ADS  Google Scholar 

  • Onnela J-P, Saramäki J, Hyvönen J, Szabó Z, Lazer D, Kaski K, Kertész J, Barabási A-L (2007) Structure and tie strengths in mobile communication networks. Proc Natl Acad Sci USA 104:7332

    Article  ADS  Google Scholar 

  • Palla G, Barabási A-L, Tamás V (2007) Community dynamics in social networks. Noise Stoch Complex Syst Finan 6601:660106

    Article  Google Scholar 

  • Palla G, Barabási A-L, Vicsek T (2007) Quantifying social group evolution. Nature 446:664–667

    Article  ADS  Google Scholar 

  • Rybski D, Buldyrev SV, Havlin S, Liljeros F, Makse HA (2010) Communication activity: temporal correlations, clustering, and, growth. arXiv:1002.0216v1

    Google Scholar 

  • Saramäki J, Onnela J-P, Kertész J, Kaski K (2005) Characterizing motifs in weighted complex networks. In: Mendes JFF et al (eds) Science of complex networks, AIP conference proceeding, vol 776, pp 108

    Google Scholar 

  • Scott J (2000) Social network analysis: a handbook. Sage Publications, London

    Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Article  ADS  Google Scholar 

  • Tantipathananand C, Berger-Wolf T, Kempe D (2007) A framework for community identification in dynamic social networks. In: KDD’07 Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, pp 717–726

    Google Scholar 

  • Vázquez A, Rácz B, Lukács A, Barabási A-L (2007) Impact of non-poissonian activity patterns on spreading processes. Phys Rev Lett 98:158702

    Article  ADS  Google Scholar 

  • Vespignani A (2009) Predicting the behavior of techno-social system. Science 325:425–428

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Vragović I, Louis E, Díaz-Guilera A (2005) Efficiency of informational transfer in regular and complex networks. Phys Rev E 71:036122

    Article  ADS  Google Scholar 

  • Wasserman S, Faust K (1994) Social networks analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393:440–442

    Article  ADS  Google Scholar 

  • Watts DJ (2004) The ”new” science of networks. Annu Rev Sociol 30:243–270

    Article  Google Scholar 

  • Watts DJ (2007) Connections: a twenty-first century science. Nature 445:489

    Article  ADS  Google Scholar 

  • Wuchty S, Uzzi B (2011) Human communication dynamics in digital footsteps: a study of the agreement between self-reported ties and email networks. PLoS ONE 6(11):e26972

    Article  ADS  Google Scholar 

  • Zhao Q, Oliver N (2010) Communication motifs: a novel approach to characterize mobile communications. In: NetMob2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Miritello .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miritello, G. (2013). Introduction and Motivations. In: Temporal Patterns of Communication in Social Networks. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00110-4_1

Download citation

Publish with us

Policies and ethics