Skip to main content

Multisymplectic Pseudo-Spectral Finite Difference Methods for Physical Models of Musical Instruments

  • Chapter
  • First Online:
Sound - Perception - Performance

Part of the book series: Current Research in Systematic Musicology ((CRSM,volume 1))

Abstract

Physical Modeling (PM) of musical instruments has gained rising interest over the last decade. This is mainly due to the rising processing capabilities of standard computers making it possible to calculate PM solutions of complete instrument geometries in reasonable computational time or real-time using specialised hardware. Several theoretical advances of discrete solution methods developed over the last 100 years are being explored for PM of musical instruments for the first time. In this work some basic properties of two methods for PM of musical instruments a) Pseudo-Spectral Methods and b) geometry preserving methods known as symplectic (for ODEs) or multisymplectic (for PDEs) are presented and implemented. Two simplified models of musical instruments are presented as a proof of concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    COMSOL, ANSYS and many others.

  2. 2.

    For the wave equation all space variables and the time variable is discretised.

  3. 3.

    Moore and Reich (2003a) show that in many cases the reversibility of an algorithm is far more important than an exact energy conservation.

  4. 4.

    To this point many results for multisymplectic integrators are only shown numerically. Some properties have yet to be generalised (Moore 2009; Moore and Reich 2003b).

  5. 5.

    If this is physically correct is a question that can not be answered here. The analytical wave equation has no speed limit for transported information. Whereas discrete approximations have a speed limit set by the discretisation step width in space and time. This is the stability condition expressed by Courant et al. (1928).

  6. 6.

    The Velocity Verlet method is similar to the Leapfrog algorithm.

  7. 7.

    In MATLAB the build-in fft()-function is used. For the C++ implementation the fftw-library (Frigo and Johnson 1997, 1998), the CUFFT-library (NVIDIA CUDA 2013) and a template based Fast Fourier Transform is used.

  8. 8.

    Mean length between two ears.

References

  • Ascher, U. M., & McLachlan, R. I., (2004). Multisymplectic box schemes and the kortewegde vries equation. Applied Numerical Mathematics, 48(34), 255–269. Workshop on Innovative Time Integrators for PDEs.

    Google Scholar 

  • Bader, R. (2005, Oct) Computational Mechanics of the Classical Guitar. New York: Springer.

    Google Scholar 

  • Bader, R. (2005). Whole geometry finite-difference modeling of the violin. Proceedings of the Forum Acusticum, 2005, 629–634.

    Google Scholar 

  • Bathe, K. J. (2002). Finite-Element Methoden. New York: Springer.

    Book  Google Scholar 

  • Bilbao, S. (2007). Robust physical modeling sound synthesis for nonlinear systems. Signal Processing Magazine, IEEE, 24(2), 32–41. march.

    Article  Google Scholar 

  • Bilbao, S. (2009). Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics. Chichester, UK: Wiley.

    Google Scholar 

  • Chaljub, E., Komatitsch, D., Vilotte, J. P., Capdeville, Y., Valette, B., & Festa, G. (2007). Spectral-element analysis in seismology. In V. Maupin & R. S. Wu (Eds.), Advances in Wave Propagation in Heterogenous Earth (pp. 365–419). Amsterdam: Elsevier. volume 48 of Advances in Geophysics.

    Chapter  Google Scholar 

  • Courant, R., Friedrichs, K., & Lewy, H. (1928). Ãœber die partiellen differenzengleichungen der mathematischen physik. Mathematische Annalen, 100, 32–74.

    Article  MathSciNet  MATH  Google Scholar 

  • Feng, K., & Qin, M. (1987). The symplectic methods for the computation of hamiltonian equations. In Y. Zhu & B. Guo (Eds.), Numerical Methods for Partial Differential Equations (pp. 1–37). Heidelberg: Springer. volume 1297 of Lecture Notes in Mathematics.

    Chapter  Google Scholar 

  • Frigo, M., & Johnson, S. G. (1997). The fastest Fourier transform in the west. Technical Report MIT-LCS-TR-728, Massachusetts Institute of Technology, September 1997.

    Google Scholar 

  • Frigo, M., & Johnson, S. G. (1998). FFTW: An adaptive software architecture for the FFT. In Proceedings 1998 IEEE Intlernational Conference on Acoustics Speech and Signal Processing (Vol. 3, pp. 1381–1384). IEEE.

    Google Scholar 

  • Fornberg, B. (1990). High-order finite differences and the pseudospectral method on staggered grids. SIAM Journal on Numerical Analysis, 27(4), 904–918.

    Article  MathSciNet  MATH  Google Scholar 

  • Fornberg, B. (1998). A practical guide to pseudospectral methods. Cambridge: Cambridge university press.

    MATH  Google Scholar 

  • Giordano, N. (2006). Finite-difference modeling of the piano. The Journal of the Acoustical Society of America, 119, 3291.

    Article  Google Scholar 

  • Gottlieb, D., & Orszag, S. A. (1987). Numerical analysis of spectral methods: theory and applications. Philadelphia: Society for, Industrial Mathematics.

    Google Scholar 

  • Hairer, E., Lubich, C., & Wanner, G. (2002). Geometric numerical integration : structure-preserving algorithms for ordinary differential equations., Springer series in computational mathematics. Berlin: Springer.

    Google Scholar 

  • Hairer, E., Lubich, C., & Wanner, G. (2003). Geometric numerical integration illustrated by the Stoermer-Verlet method. Acta Numerica, 12, 399–450.

    Article  MathSciNet  MATH  Google Scholar 

  • Hamman, C. W., Kirby, R. M., & Berzins, M. (2007). Parallelization and scalability of a spectral element channel flow solver for incompressible navier-stokes equations. Concurrency and Computation: Practice and Experience, 19(10), 1403–1422.

    Article  Google Scholar 

  • Komatitsch, D., & Tromp, J. (2002). Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophysical Journal International, 139(3), 806–822.

    Article  Google Scholar 

  • Komatitsch, D., Tsuboi, S., Tromp, J., et al. (2005). The spectral-element method in seismology. Geographical Monograph-American Geophysical Union, 157, 205.

    Article  Google Scholar 

  • Kong, L., Liu, R., & Zheng, X. (2007). A survey on symplectic and multi-symplectic algorithms. Applied Mathematics and Computation, 186(1), 670–684.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, U., Kim, J., Leung, A. Y. T., et al. (2000). The spectral element method in structural dynamics. Shock and Vibration Digest, 32(6), 451–465.

    Article  Google Scholar 

  • Lesage, A. C., Zhou, H., Araya-Polo, M., Cela, J. M., Ortigosa, F. (2008). 3d reverse-time migration with hybrid finite difference-pseudospectral method.

    Google Scholar 

  • Lyons, W., Ceniceros, H. D., Chandrasekaran, S., & Gu, M. (2005). Fast algorithms for spectral collocation with non-periodic boundary conditions. Journal of computational physics, 207(1), 173–191.

    Article  MathSciNet  MATH  Google Scholar 

  • Mclachlan, R. (1994). Symplectic integration of Hamiltonian Wave Equations. Numerical Mathematics, 66, 465–492.

    Article  MathSciNet  MATH  Google Scholar 

  • McLachlan, R. I., Reinout, G., & Quispel, W. (2006). Geometric integrators for ODEs. Journal of Physics A: Mathematical and General, 39, 5251–5285.

    Article  MathSciNet  MATH  Google Scholar 

  • Moore, B. E. (2009). Conformal multi-symplectic integration methods for forced-damped semi-linear wave equations. Mathematics and Computers in Simulation, 80(1), 20–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Moore, B., & Reich, S. (2003). Backward arror analysis for multi-symplectica integration methods. Numerische Mathematik, 95(4), 625–652.

    Article  MathSciNet  MATH  Google Scholar 

  • Moore, B. E., & Reich, S. (2003). Multi-symplectic integration methods for Hamiltonian PDEs. Future Generation Computer Systems, 19(3), 395–402.

    Article  Google Scholar 

  • Nvidia, CUDA. (2013). Compute unified device architecture. Available at https://developer.nvidia.com/category/zone/cudazone,. Accessed 2 Jan 2013.

  • Patera, A. T. (1984). A spectral element method for fluid dynamics: laminar flow in a channel expansion. Journal of Computational Physics, 54(3), 468–488.

    Article  MathSciNet  MATH  Google Scholar 

  • Peiró, J., & Sherwin, S. (2005). Finite difference, finite element and finite volume methods for partial differential equations. Handbook of Materials Modeling, 2415–2446.

    Google Scholar 

  • Pfeifle, F., & Bader, R. (2011). Real-time finite-difference string-bow interaction field programmable gate array (fpga) model coupled to a violin body. The Journal of the Acoustical Society of America, 130(4), 2507–2507.

    Article  Google Scholar 

  • Pfeifle, F., & Bader, R. (2011). Measurement and physical modelling of sound hole radiations of lutes. The Journal of the Acoustical Society of America, 130(4), 2507–2507.

    Article  Google Scholar 

  • Pfeifle, F., & Bader, R. (2011). Nonlinear coupling and tension effects in a real-time physical model of a banjo. The Journal of the Acoustical Society of America, 130(4), 2432–2432.

    Article  Google Scholar 

  • Pfeifle, F., & Bader, R. (2012). Measurement and analysis of sound radiation patterns of the chinese ruan and the yueqin. The Journal of the Acoustical Society of America, 131(4), 3218–3218.

    Article  Google Scholar 

  • Pfeifle, F., & Bader, R. (2012b). Real-time finite difference physical models of muical instruments ona field programmable gate array (fpga). In Proceedings of the International Conference on Digital Audio Effects (DAFx-12) (pp. 63–70), York, UK, Sept. 17–21.

    Google Scholar 

  • Pfeifle, F., & Bader, R. (2013). Systematic musicology hamburg. Available at http://www.systmuwi.de/muwi_research_Physical_Modeling_of_Musical_Instruments.html,. Accessed 02 Jan 2013

  • Sathej, G., & Adhikari, R. (2008). The eigenspectra of indian musical drums. arXiv, preprint arXiv:0809.1320.

    Google Scholar 

  • Schober, C. M., & Wlodarczyk, T. H. (2008). Dispersive properties of multisymplectic integrators. Journal of Computational Physics, 227, 5090–5104.

    Article  MathSciNet  MATH  Google Scholar 

  • Sha, W., Huang, Z., Chen, M., & Wu, X. (2008). Survey on symplectic finite-difference time-domain schemes for maxwell’s equations. Antennas and Propagation, IEEE Transactions on, 56(2), 493–500. feb.

    Article  MathSciNet  Google Scholar 

  • Spa, C., Garriga, A., & Escolano, J. (2010). Impedance boundary conditions for pseudo-spectral time-domain methods in room acoustics. Applied Acoustics, 71(5), 402–410.

    Article  Google Scholar 

  • Tong, M. & Krozer, V. A. (2002). Non-Uniform Pseudo-Spectral Time Domain (PSTD) Method in One-Dimensional Applications.

    Google Scholar 

  • Trefethen, L. N. (2000). Spectral methods in MATLAB (Vol. 10). Society for, Industrial Mathematics.

    Google Scholar 

  • Verlet, L. (Jul 1967). Computer "experiments" on classical fluids. i. thermodynamical properties of lennard-jones molecules. Physical Review, 159, 98–103.

    Article  Google Scholar 

  • von Helmholtz, H. (1896). Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. Friedrich Vieweg und Sohn. Available at http://www.uni-leipzig.de/ psycho/wundt/opera/helmhltz/toene/TonEmpIn.htm

  • Wang, Z. J. (2002). Spectral (finite) volume method for conservation laws on unstructured grids. basic formulation: Basic formulation. Journal of Computational Physics, 178(1), 210–251.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Pfeifle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pfeifle, F. (2013). Multisymplectic Pseudo-Spectral Finite Difference Methods for Physical Models of Musical Instruments. In: Bader, R. (eds) Sound - Perception - Performance. Current Research in Systematic Musicology, vol 1. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00107-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00107-4_15

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00106-7

  • Online ISBN: 978-3-319-00107-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics