Skip to main content

Performance Controller for Physical Modelling FPGA Sound Synthesis of Musical Instruments

  • Chapter
  • First Online:
Sound - Perception - Performance

Part of the book series: Current Research in Systematic Musicology ((CRSM,volume 1))

  • 2172 Accesses

Abstract

Performance controller for Physical Modeling algorithms need to change parameters of the model in real-time, e.g. bowing pressure or finger position in violin playing. As the FPGA implementation is the only real-time physical model for whole geometry musical instruments, changing these parameters during the performance needs a continuous data flow between the FPGA chip and a performance controller. This paper suggests an PCIe interface within a PCIe root complex to exchange parameter and data on a Windows platform. Therefore, several hardware devices need to cooperate. The solution suggested is an FPGA displaying itself as a memory device to the OS, where memory tables can be written or read. Using a Kernel as well as a User Mode Driver, a package protocol is implemented to submit the controller data to the VHDL architecture on the FPGA, where the physical parameters of the device are changed in real-time. With this implementation, also the results of the physical model data can be transferred to the User Mode level to access the displacement and velocity values of the model. Using an Audio device interface, again within the OS, the sound is then played back via an audio setup. Then, using appropriate sliders or the like, the performance parameter can be changed by a user and the resulting sound can be listened to instantaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A consortium consisting of almost 1000 hardware and software development companies.

  2. 2.

    Some specifications for Revision 4.0 where published in August 2012.

  3. 3.

    ISO/IEC 7498-1.

Literature

  • Bader, R. (2002). Fraktale Dimensionen, Infomationsstrukturen und Mikrorhythmik der Einschwingvorgänge von Musikinstrumenten. Doktorarbeit der Universität Hamburg. http://www.sub.uni-hamburg.de/volltexte/2002/598.

  • Bader, R. (2003). Physical model of a complete classical guitar body. In R. Bresin (Ed.). Proceedings of the Stockholm Music Acoustics Conference, (Vol. 1, pp. 21–124).

    Google Scholar 

  • Bader, R. (2004). Additional modes in transients of a balinese gender dasa plate. Journal of the Acoustical Society of America, 116, 2621.

    Google Scholar 

  • Bader, R. (2005a) Computational Mechanics of the Classical Guitar. Springer (http://www.springeronline.com/3-540-25136-7).

  • Bader, R. (2005b). Complete geometric computer simulation of a classical guitar. Lay-Language paper of the American Acoustical Society 05, http://www.aip.org/149th/bader_Guitar.htm.

  • Bader, R. (2005c). Whole geometry finite-difference modeling of the violin. In Proceedings of the Forum Acusticum 2005, (pp. 629–634).

    Google Scholar 

  • Bader, R. (2005d). Turbulent k-e model of flute-like musical instrument sound production. In E. Lutton & J. Lévy-Véhel (Ed.), Fractals in Engineering. New trends in theory and applications. Springer, (pp. 109–122).

    Google Scholar 

  • Bader, R. (2006a). Finite-element calculation of a bass drum. Journal of the Acoustical Society of America, 119, 3290.

    Google Scholar 

  • Bader, R. (2006b). Characterization of guitars through fractal correclation dimensions of initial transients. Journal of New Music Research, 35(4), 323–332.

    Article  Google Scholar 

  • Bader, R. (2007b). Spatial cognitive timbre dimensions of physical modelling sounds using Multi-Dimensional Scaling Techniques (MDS). Journal of the Acoustical Society of America, 121, 3184.

    Google Scholar 

  • Bader, R. (2008a). Individual reed characteristics due to changed damping using coupled flow-structure and time-dependent geometry changing finite-element calculation. In Forum Acusticum joined with American Acoustical Society Paris 08. (pp. 3405–3410).

    Google Scholar 

  • Bader, R. (2008b). Fine tuning of guitar sounds with changed top plate, back plate and rim geometry using a whole body 3D finite-difference model. In Forum Acusticum joined with American Acoustical Society Paris 08. (pp. 5039–5044).

    Google Scholar 

  • Bader, R. (2009). Additional modes in a Balinese gender dasa plate due to its trapezoid shape. In R. Bader & Ch. Neuhaus & U. Morgenstern (Eds.), Studies in systematic musicology. Peter Lang Verlag (in print).

    Google Scholar 

  • Bader, R. & Hansen, U. (2008). Acoustical analysis and modeling of musical instruments using modern signal processing methods. In D. Havelock & M. Vorländer & S. Kuwano (Eds.), Handbook of Signal Processing in Acoustics (pp. 219–247). Berlin: Springer.

    Google Scholar 

  • Barthe, K. J. (2002). Finite-element methoden. Springer.

    Google Scholar 

  • Bécache, E., Chaigne, A., Derveaux, G., & Joly, P. (2005). Numerical simulation of a guitar. Computers and Structures, 83(2–3), 107–126.

    Article  MathSciNet  Google Scholar 

  • Bilbao, S. (2009). Numerical sound synthesis. Finite-difference schemes and simulation in musical acoustics. Wiley.

    Google Scholar 

  • Bissinger, J. (2003). Modal analysis of a Violin Octet. Journal of the Acoustical Society of America, 113(4), 2105–2113.

    Article  Google Scholar 

  • Brassail et al. (2007). FPGA Parallel Implementation of CMAC Type Neural Network with on Chip Learning. IEEE 111–115.

    Google Scholar 

  • Brich, T., Novacek, K. & Khateb, A. (2006). The digital signal processing using FPGA. ISSE’06, 29th International Spring Seminar on Electronics Technology. (pp. 322–324).

    Google Scholar 

  • Chen, P., Tian, X., Chen, Y., & Yang, X. (2008). Delay-sum Beamforming on FPGA. ICSP 2008 Proceedings.(pp. 2542–2545).

    Google Scholar 

  • Da Silva, A., Scavone, G., & van Waltijen, M. (2007). Numerical simulations of fluid-structure interactions in single-reed mouthpieces. Journal of the Acoustical Society of America, 122(3), 1798–1809.

    Article  Google Scholar 

  • Elejabarrieta, M. J., Ezcurra, A., & Santamaria, C. (2002). Coupled modes of the resonance box of the guitar. Journal of the Acoustical Society of America, 111, 2283–2292.

    Article  Google Scholar 

  • Elejabarrieta, M. J., Ezcurra, A., & Santamaria, C. (2004). Vibrational behaviour of the guitar soundboard analysed by means of finite element analysis. Acustica united with Acta Acustica, 87, 128–136.

    Google Scholar 

  • Erkut, C., Karjalainen, M., Huang, P., & Välimäki, V. (2002). Acoustical analysis and model-based sound synthesis of the kantele. Journal of the Acoustical Society of America, 112(4), 1681–1691.

    Article  Google Scholar 

  • Essl, G., & Cook, P. (2000). Measurements and efficient simulation of bowed bars. Journal of the Acoustical Society of America, 108(1), 379–388.

    Article  Google Scholar 

  • Fletcher, N. & Rossing, Th. (2000). Physics of Musical Instruments. Springer.

    Google Scholar 

  • Flügge, W. (1962). Statik und Dynamik der Schalen. Springer-Verlag.

    Google Scholar 

  • FPGA Parallel Implementation of CMAC Type Neural Network with on Chip Learning. IEEE 2007. (pp. 111–115).

    Google Scholar 

  • Gibbons, I. S., Howard, D. M. & Tyrrell, A.M. (1998). Real-time singing synthesis using a prarllel processing system. IEE Colloquium on Audio and Music Technology. The Challenge of Creative DSP, 8/1–8/6.

    Google Scholar 

  • Gibbons, J. A., Howard, D. M., & Tyrrell, A. M. (2005). FPGA implementation of 1D wave equation for real-time audio synthesis. IEE Proceedings, Computers and Digital Techniques, 152(5), 619–631.

    Article  Google Scholar 

  • Giordano, N. (2006). Finite-difference modeling of the piano. Journal of the Acoustical Society of America, 119, 3291.

    Article  Google Scholar 

  • Hao, C., & Ping, W. (2002). The high speed implementation of direction-of-arrival estimation algorithm. International Conference on Communication, Circuits and Systems and West Sino Expositions, 2, 922–925.

    Google Scholar 

  • Hutchings, C. M. (1981, October). Klang und Akustik der Geige. In Spektrum der Wissenschaft, Dezember 1981, (pp. 112–122) (original: Scientific American).

    Google Scholar 

  • Inoguchi, Y. (2004). Outline of the ultra fine grained parallel processing by FPGA Seventh International Conference on High Performance Computing and Grid in Asia Pacific Region, 2004 pp. 434–441

    Google Scholar 

  • Jansson, E. V. (2003). The BH-Hill and tonal quality of the violin. In Proceedings of Stockholm Music Acoustical Conference (SMAC 03), (Vol. 1, pp. 71–4).

    Google Scholar 

  • Jayalakshmi, K. & Ramanarayanan, V. (2006). Real-time simulation of electrical machines on FPGA platform, IICPE pp. 259-263. doi:10.1109/IICPE.2006.4685378

  • Karniadakis, G. E., & Kirby II, R. M. (2003). Parallel Scientific Computing in C++ and MPI. Cambridge University Press.

    Google Scholar 

  • Kilts, S. (2007). Advanced FPGA Design: Architecture, Implementation, and Optimization, isbn: 0470054379, Wiley-IEEE Press

    Google Scholar 

  • Knothe, K., Wessels, H. (1999). Finite Elemente. Eine Einführung für Ingenieure. 3. Auflage, Springer.

    Google Scholar 

  • Kolodko, J., Suzuki, S. & Harashima, F. (2005). Eye-gaze tracking: an approach to pupil tracking targeted to FPGAs, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 344–349

    Google Scholar 

  • Lau, A., Spiess, P., Wriggers, P., Schneider, A., & Bader, R. (2004, Feb). Analysis of bell vibrations. In 2nd Conference on Advances and Application of GiD. Preprints. International Center for numerical methods in engineering, Barcelona.

    Google Scholar 

  • Leissa, A. W. (1969a). Vibration of Plates. Publication of the American Acoustical Society (pp. 1993).

    Google Scholar 

  • Leissa, A. W. (1969b). Vibration of Shells. Publication of the American Acoustical Society (pp. 1993).

    Google Scholar 

  • Lis, J. D. & Kowalski, C. T. (2008). Parallel fixed point FPGA Implementation of sensorless induction motor torque control. 13th Power Electronics and Motion Control Conference 2008, EPE-PEMC, (pp. 1359–1364).

    Google Scholar 

  • Liu, M., Kuehn, W., Lu, Z. & Jantsch, A. (2008). System-on-an-FPGA design for real-time particle track recognition in physics experiments. 11th Euromicro Conference on Digital System Design Architectures, Methods and Tools. (pp. 599–605).

    Google Scholar 

  • Madanayake, A., Bruton, L., Comis, F. & Comis, C. (2004). FPGA Architectures for Real-Time 2D/3D FIR/IIR Plane Wave Filters. Proceedings of the 2004 International Symposium on Circuits and Systems ISCAS’04, (Vol. 33 613–616).

    Google Scholar 

  • Martins, G., Barata, M. & Gomes, L. Low cost method to reproduce sound with FPGA. IEEE International Symposium on Industrial Electronics 2008. ISIE 2008, (pp. 1932–1936, 208).

    Google Scholar 

  • Maslennikow, O. & Sergiyenko, A. (2006). Mapping DSP Algorithms into FPGA. Proceedings of the International Symposium on Parallel Computing in Electrical Engineering, (pp. 208–213).

    Google Scholar 

  • Meyer-Baese, Uwe. (2004). Digital signal processing with field programmable gate arrays (3rd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Motuk, E., Woods, R. & Bilbao, S. (2005). Implementation of finite-differece schemes for the wave equation on FPGA. IEEE International Acoustics Speech and Signal Processing ICASSP’05, (Vol. 3, 237–240).

    Google Scholar 

  • Motuk, E., Woods, R., Bilbao, S., & McAllistere, J. (2007). Design methodology for real-time FPGA-based sound synthesis. IEEE Transactions on Signal Processing, 55(12), 5833–5845.

    Article  MathSciNet  Google Scholar 

  • Musical Acoustics: Virtual Instruments I & II’, Session at the Joined Meeting of the American Acoustical Society with the European Acoustical Society, Paris 2008, Journal of the Acoustical Society of America. 123 (5, 2) 3521–23, 3664–66.

    Google Scholar 

  • Özakča, M. T. G. (2004). Structural analysis and optimization of bells using finite elements. Journal of New Music Research, 33, 61–69.

    Article  Google Scholar 

  • Pfeifle, F. & Bader, R. (2009). Real-time physical modelling of a real Banjo geometry using FPGA hardware technology. In Bader, R. (Ed.). Musical Acoustics, Neurocognition and Psychology of Music Hamburg Yearbook for Musicology 25, (pp. 71–86).

    Google Scholar 

  • Pfeifle, F., & Bader, R. (2011). Real-time finite-difference string-bow interaction Field-Programmable Gate Array (FPGA) model coupled to a violin body. Journal of the Acoustical Society of America, 130, 2507.

    Article  Google Scholar 

  • Pfeifle, F., & Bader, R. (2012). Real-time finite-difference physical model of musical instruments using a Field-Programmable Gate Array (FPGA). Proceedings of the 15th International Conference on Digital Audio Effects (DAFx-12), York, (p. 1–8) 2012.

    Google Scholar 

  • Reichardt, J. & Schwarz, B. (2007). VHDL-Synthese: Entwurf digitaler Schaltungen und Systeme, isbn: 9783486581928, Oldenbourg. http://books.google.de/books?id=v93aGAAACAAJ

  • Schneider, A., & Bader, R. (2003). Akustische Grundlagen Musikalischer Klänge. Mitteilungen der mathematischen Gesellschaft Hamburg.

    Google Scholar 

  • Schoofs, A. (2002). Computer-aided bell design and optimization in The Quality of bells. Eurocarillon 2002, Brugge, Sept. 6th, 2002. Proceedings of the 16th Meeting of the FWO Research Society on Foundations of Music Research, Ghent University:Ghent: IPEM.

    Google Scholar 

  • Shlager, K. L., & Schneider, B. (1995). A Selective Survey of the Finite-Diffrence Time-Domain Literature. IEEE Antennas and Propagation Magazine, (Vol. 37 pp. 39–56).

    Google Scholar 

  • Shuang, K, Yankai, X., Shan, J. & Hongwu, Z. (2008). Converting analog controllers to digital controllers with FPGA. ICSP2008 Proceedings. (pp. 486–489).

    Google Scholar 

  • Smith, (2008). Musical Acoustics: Virtual Instruments I & II’, Session at the Joined Meeting of the American Acoustical Society with the European Acoustical Society, Paris 2008, J. Acoust. Soc. Am., (Vol. 123 (5, 2) pp. 3521–3523, 3664–3666).

    Google Scholar 

  • Smith, J. III: Digital waveguide modeling and signal processing. http://ccrma.stanford.edu/~jos/wg.html.

  • Solari, E., & Congdon, B. (2003, September). The Complete PCI Express Reference. Intel Press.

    Google Scholar 

  • Strzdoka, R., & Göddeke, D., (2006). Pipelined mixed precision algorithms on fpgas for fast and accurate pde solvers from low precision components. 14th annual IEEE Symposium on Field Programmable Custom Computing Machinges, (pp. 259–270).

    Google Scholar 

  • Subasri, V., Lavanya, K., & Umamaheswari, B. (2006). Implementation of digital PID controller in Field Programmable Gate Array(FPGA). Proceedings of India International Conference on Power Electronics, 172–176, 2006.

    Google Scholar 

  • Veggeberg, K., & Zheng, A. (2009). Real-time noise source identification using programmable gate array(FPGA) technology. Proceedings of Meetings on Acoustical Society of America, 1–10, 2009.

    Google Scholar 

  • Von Herzen, B. (1998). Signal processing at 250 Mhz using high-performance FPGA’s. IEEE Transactions onvery large scale integration (VLSI) Systems. (Vol. 6 (2) pp. 238–246).

    Google Scholar 

  • Wagner, K.W. (1947). Einführung in die Lehre von den Schwingungen und Wellen. Wiesbaden.

    Google Scholar 

  • Wang, Z., Jin, R., Geng, J. & Fan, Y. (2005). FPGA implementation of downlink DBF calibration. Antennas and Propagation Society International Symposium.

    Google Scholar 

  • Woodhouse, J. (2005). On the Bridge Hill of the Violin. Acta Acustica united with Acustica, 91, 155–165.

    Google Scholar 

  • Zou, Z., Hongyuan, W. & Guowen, Y. (2006). An improved MUSIC algorithm implemented with high -speed parallel optimization for FPGA. 7th International Symposium on Antennas, Progpagation & EM Theory, ISAPE ‘06, (pp. 1–4).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Pfeifle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pfeifle, F., Bader, R. (2013). Performance Controller for Physical Modelling FPGA Sound Synthesis of Musical Instruments. In: Bader, R. (eds) Sound - Perception - Performance. Current Research in Systematic Musicology, vol 1. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00107-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00107-4_14

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00106-7

  • Online ISBN: 978-3-319-00107-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics