Skip to main content

The μ·cosm Project: An Introspective Platform to Study Intelligent Agents in the Context of Music Ensemble Improvisation

  • Chapter
  • First Online:
Sound - Perception - Performance

Part of the book series: Current Research in Systematic Musicology ((CRSM,volume 1))

Abstract

The study reported here centers around the question of how to evaluate the performance of creative intelligent machines. In this case, the prototype is a music improvising agent performing Free Music – a genre characterized by the lack of rules. Given this circumstance, evaluating the aesthetic quality of the agent’s performance becomes even more difficult than for traditional music. The degree of ensemble communication between the agent and human musicians is used as a performance measure. Using foot pedals, the participating musicians are asked to track their perceived ensemble states by considering everybody's tension curves. The correlation over time between the ensemble states recorded by the musicians and by the machine is then evaluated. Additionally, an introspective approach to testing the agent is introduced by simulating a trio consisting of the agent and two other instruments (saxophone and bass pedal), both performed by the author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arom, S. (1967). The use of play-back techniques in the study of oral polyphonies. Ethnomusicology, 20(3), 483–519.

    Article  Google Scholar 

  • Arom, S., Léothaud, G., & Voisin, F. (1997). Experimental ethnomusicology: An interactive approach to the study of musical scales. In I. Deliège & J. Sloboda (Eds.), Perception and cognition of music (pp. 3–30). Hove: Taylor and Francis.

    Google Scholar 

  • Arom, S., Fernando, P.N. & Marandola, P.F. (2007). An innovative method for the study of african musical scales: Cognitive and technical aspects: Proceedings of the 4th Sound and Music Computing Conference SMC’07, Greece (pp. pp. 107–116) July 11–13 2007.

    Google Scholar 

  • Braasch, J. (2004). Über die Verbreitung der Durchschlagzunge durch Georg Joseph Vogler [On the popularization of free reeds by Georg Joseph Vogler], in: Orgelregister mit Durchschlagzungen. Geschichte, Konstruktion und akustische Eigenschaften [Organ stops with free reeds. History, construction and acoustical properties] (pp. 29–64), Berlin.

    Google Scholar 

  • Braasch, J., Bringsjord, S., Kuebler, C., Oliveros, P., Parks, A. & Van Nort, D. (2011). Caira—A creative artificially-intuitive and reasoning agent as conductor of telematic music improvisations: Proceedingsof 131 th Audio Engineering Society Convention, October 20–23, 2011, New York, NY, Paper Number 8546.

    Google Scholar 

  • Braasch, J., Peters, N., Van Nort, D., Oliveros, P. & Chafe, C. (2011). A spatial display for telematic music performances. In Y. Suzuki, D. Brungart, Y. Iwaya, K. Iida, D. Cabrera & H. Kato (Eds.), Principles and applications of spatial hearing: Proceedings of the 1 st International Workshop on IWPASH (pp. 436–451). Singapore: World Scientific Pub Co Inc, ISBN: 9814313874.

    Google Scholar 

  • Braasch, J., Van Nort, D., Oliveros, P., Bringsjord, S., Sundar Govindarajulu, N., Kuebler, C. & Parks, A. (2012). A creative artificially-intuitive and reasoning agent in the context of live music improvisation.: Music, Mind, and Invention Workshop: Creativity at the Intersection of Music and Computation, March 30–31 2012, The College of New Jersey, URL: http://www.tcnj.edu/ mmi/proceedings.html, last accessed: August 10, 2012.

  • Chalupper, J., & Fastl, H. (2002). Dynamic loudness model (DLM) for normal and hearing-impaired listeners. Acta Acustica united with Acustica, 88, 378–386.

    Google Scholar 

  • de Cheveigné, A. & Kawahara, H. (2002a). Matlab toolbox: YIN, a fundamental frequency estimator for speech and music. URL: http://audition.ens.fr/adc/sw/, last accessed, January 10 2012.

  • de Cheveigné, A., & Kawahara, H. (2002b). Yin, a fundamental frequency estimator for speech and music. Journal of the Acoustical Society of America, 111, 1917–1930.

    Article  Google Scholar 

  • Cope, D. (1987). An expert system for computer-assisted composition. Computer Music Journal, 11(4), 30–46.

    Article  Google Scholar 

  • Daniel, P., & Weber R. (1997). Psychoacoustical roughness: Implementation of an optimized model. Acustica, 83, 113–123

    Google Scholar 

  • Dubnov, S. (2003). Non-gaussian source-filter and independent components generalizations of spectral flatness measure: Proceedings of the International Conference on Independent Components Analysis (ICA2003), Porto (pp. 143–148).

    Google Scholar 

  • Dubnov, S., McAdams, S., & Reynolds, R. (2006). Structural and affective aspects of music from statistical audio signal analysis. Journal of the American Society for Information Science and Technology, 57(11), 1526–1536.

    Article  Google Scholar 

  • Ellis, D. P. W. (1996). Prediction-driven computational auditory scene analysis. Massachusetts Institute of Technology: Doctoral Dissertation.

    Google Scholar 

  • Friberg, A. (1991). Generative rules for music performance: A formal description of a rule system. Computer Music Journal, 15(2), 56–71.

    Article  MathSciNet  Google Scholar 

  • Jacob, B. (1996). Algorithmic composition as a model of creativity. Organised Sound, 1(3), 157–165.

    Article  Google Scholar 

  • Jacobsthal G. (1873). Die Anfänge des mehrstimmigen Gesanges im Mittelalter [The beginnings of polyphonic chant in the Middle Ages] (vol 41 pp. 641–646). Leipzig: Allgemeine Musikalische Zeitung.

    Google Scholar 

  • Lewis, G. E. (2000). Too many notes: Computers, complexity and culture in voyager. Leonardo Music Journal, 10, 33–39.

    Article  Google Scholar 

  • McAdams, S., Smith, B.K., Vieillard, S., Bigand, E., & Reynolds, R. (2002). Real-time perception of a contemporary musical work in a live concert setting. In C. Stevens, D. Burnham, G. McPherson, E. Schubert & J. Renwick (Eds.), Proceedings of the 7th International Conference on Music Perception and Cognition, Sydney, Australia

    Google Scholar 

  • Van Nort, D., Braasch, J. & Oliveros, P. (2009). A system for musical improvisation combining sonic gesture recognition and genetic algorithms: Proceedings of the SMC 2009-6 th Sound and Music Computing Conference, Portugal (pp. 131–136) July 23–25 2009.

    Google Scholar 

  • Van Nort, D., Oliveros, P. & Braasch, J. (2010). Developing systems for improvisation based on listening: Proceedings of the 2010 International Computer Music Conference (ICMC 2010), New York, June 1–5 2010.

    Google Scholar 

  • Van Nort, D., Braasch, J. & Oliveros, P. (2012). Mapping to musical actions in the FILTER system: The 12 st International Conference on New Interfaces for Musical Expression (NIME), May 21–23, Ann Arbor, Michigan.

    Google Scholar 

  • Pachet, F. (2004). Beyond the cybernetic jam fantasy: The continuator. IEEE Computer Graphics and Applications, 24(1), 31–35.

    Article  Google Scholar 

  • Roman, N., Srinivasan, S., & Wang, D. L. (2006). Binaural segregation in multisource reverberant environments. Journal of the Acoustical Society of America, 120, 4040–4051.

    Article  Google Scholar 

  • Suzuki, Y., Mellert, V., Richter U., Møller, H., Nielsen, L., Hellman, R., Ashihara, K., Ozawa, K. & Takeshima, H. (2003). Precise and full-range determination of two-dimensional equal loudness contours, Technical Report, Tohoku University, Sendai.

    Google Scholar 

  • Widmer, G. (1994). The synergy of music theory and AI: Learning multi-level expressive interpretation, Technical Report OEFAI-94-06, Austrian Research Institute for Artificial Intelligence.

    Google Scholar 

  • Zwicker, E., & Fastl, H. (1999). Psychoacoustics: Facts and models, 2nd edn. Berlin: Springer.

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 1002851. The real-time implementation of the Caira system was written in Max/MSP utilizing various custom externals and abstractions as well as the FTM, Gabor and MnM packages from IRCAM, externals from CNMAT and Tristan Jehan’s toolboxes (also using their loudness and roughness algorithms for a single-machine, stand-alone version of Caira).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Braasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Braasch, J. (2013). The μ·cosm Project: An Introspective Platform to Study Intelligent Agents in the Context of Music Ensemble Improvisation. In: Bader, R. (eds) Sound - Perception - Performance. Current Research in Systematic Musicology, vol 1. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00107-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00107-4_11

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00106-7

  • Online ISBN: 978-3-319-00107-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics