Skip to main content
  • 2563 Accesses

Abstract

In Chap. 5 stability of the zero solution and positive equilibrium points for nonlinear systems is studied. In particular, differential equations with nonlinearities in deterministic and stochastic parts are considered, differential equation with fractional nonlinearity. It is shown that investigation of stability in probability for nonlinear systems with the level of nonlinearity higher than one can be reduced to investigation of asymptotic mean square stability of the linear part of the considered nonlinear system. The obtained results are illustrated by 18 figures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandyopadhyay M, Chattopadhyay J (2005) Ratio dependent predator–prey model: effect of environmental fluctuation and stability. Nonlinearity 18:913–936

    Article  MathSciNet  MATH  Google Scholar 

  2. Beretta E, Kolmanovskii V, Shaikhet L (1998) Stability of epidemic model with time delays influenced by stochastic perturbations. Math Comput Simul 45(3–4):269–277 (Special Issue “Delay Systems”)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bradul N, Shaikhet L (2007) Stability of the positive point of equilibrium of Nicholson’s blowflies equation with stochastic perturbations: numerical analysis. Discrete Dyn Nat Soc 2007:92959. doi:10.1155/2007/92959. 25 pages

    Article  MathSciNet  Google Scholar 

  4. Bradul N, Shaikhet L (2009) Stability of difference analogue of mathematical predator–prey model by stochastic perturbations. Vest Odesskogo Naz Univ Mat Mekh 14(20):7–23 (in Russian)

    Google Scholar 

  5. Carletti M (2002) On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment. Math Biosci 175:117–131

    Article  MathSciNet  MATH  Google Scholar 

  6. Grove EA, Ladas G, McGrath LC, Teixeira CT (2001) Existence and behavior of solutions of a rational system. Commun Appl Nonlinear Anal 8(1):1–25

    MathSciNet  MATH  Google Scholar 

  7. Gurney WSC, Blythe SP, Nisbet RM (1980) Nicholson’s blowflies revisited. Nature 287:17–21

    Article  Google Scholar 

  8. Gyori I, Trofimchuk S (1999) Global attractivity in \(\dot{x}(t)=-\delta x(t)+pf(x(t-\tau))\). Dyn Syst Appl 8:197–210

    MathSciNet  Google Scholar 

  9. Gyori I, Trofimchuck SI (2002) On the existence of rapidly oscillatory solutions in the Nicholson’s blowflies equation. Nonlinear Anal 48:1033–1042

    Article  MathSciNet  Google Scholar 

  10. Jovanovic M, Krstic M (2012) Stochastically perturbed vector-borne disease models with direct transmission. Appl Math Model 36:5214–5228

    Article  MathSciNet  MATH  Google Scholar 

  11. Kulenovic MRS, Nurkanovic M (2002) Asymptotic behavior of a two dimensional linear fractional system of difference equations. Rad Mat 11(1):59–78

    MathSciNet  MATH  Google Scholar 

  12. Kulenovic MRS, Nurkanovic M (2005) Asymptotic behavior of a system of linear fractional difference equations. Arch Inequal Appl 2005(2):127–143

    MathSciNet  MATH  Google Scholar 

  13. Kulenovic MRS, Nurkanovic M (2006) Asymptotic behavior of a competitive system of linear fractional difference equations. Adv Differ Equ 2006(5):19756. doi:10.1155/ADE/2006/19756. 13 pages

    MathSciNet  Google Scholar 

  14. Liz E, Röst G (2009) On global attractor of delay differential equations with unimodal feedback. Discrete Contin Dyn Syst 24(4):1215–1224

    Article  MathSciNet  MATH  Google Scholar 

  15. Mackey MC, Glass L (1997) Oscillation and chaos in physiological control system. Science 197:287–289

    Article  Google Scholar 

  16. Mukhopadhyay B, Bhattacharyya R (2009) A nonlinear mathematical model of virus-tumor-immune system interaction: deterministic and stochastic analysis. Stoch Anal Appl 27:409–429

    Article  MathSciNet  MATH  Google Scholar 

  17. Nicholson AJ (1954) An outline of the dynamics of animal populations. Aust J Zool 2:9–65

    Article  Google Scholar 

  18. Paternoster B, Shaikhet L (2008) Stability of equilibrium points of fractional difference equations with stochastic perturbations. Adv Differ Equ 2008:718408. doi:10.1155/2008/718408, 21 pages

    Article  MathSciNet  Google Scholar 

  19. Röst G, Wu J (2007) Domain decomposition method for the global dynamics of delay differential equations with unimodal feedback. Proc R Soc Lond Ser A, Math Phys Sci 463:2655–2669

    Article  MATH  Google Scholar 

  20. Sarkar RR, Banerjee S (2005) Cancer self remission and tumor stability—a stochastic approach. Math Biosci 196:65–81

    Article  MathSciNet  MATH  Google Scholar 

  21. Shaikhet L (1975) Stability investigation of stochastic systems with delay by Lyapunov functionals method. Probl Pereda Inf 11(4):70–76 (in Russian)

    Google Scholar 

  22. Shaikhet L (1998) Stability of predator–prey model with aftereffect by stochastic perturbations. Stab Control: Theory Appl 1(1):3–13

    MathSciNet  Google Scholar 

  23. Shaikhet L (2011) Lyapunov functionals and stability of stochastic difference equations. Springer, London

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shaikhet, L. (2013). Stability of Systems with Nonlinearities. In: Lyapunov Functionals and Stability of Stochastic Functional Differential Equations. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00101-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00101-2_5

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00100-5

  • Online ISBN: 978-3-319-00101-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics