Skip to main content

Stability of Positive Equilibrium Point of Nonlinear System of Type of Predator–Prey with Aftereffect and Stochastic Perturbations

  • Chapter
  • 2579 Accesses

Abstract

In Chap. 10 a system of two nonlinear differential equations is considered that is destined to unify different known mathematical models, in particular, very often investigated models of predator–prey type. In particular, a ratio-dependent predator–prey model is considered. The system under consideration is exposed to stochastic perturbations and is linearized in a neighborhood of the positive point of equilibrium. Two different ways of construction of asymptotic mean-square stability conditions are considered. The obtained asymptotic mean-square stability conditions for the trivial solution of the constructed linear system are at the same time sufficient conditions for the stability in probability of the positive equilibrium point of the initial nonlinear system under stochastic perturbations. The obtained stability regions are illustrated by six figures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arino O, Elabdllaoui A, Mikaram J, Chattopadhyay J (2004) Infection on prey population may act as a biological control in a ratio-dependent predator–prey model. Nonlinearity 17:1101–1116

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandyopadhyay M, Chattopadhyay J (2005) Ratio dependent predator–prey model: effect of environmental fluctuation and stability. Nonlinearity 18:913–936

    Article  MathSciNet  MATH  Google Scholar 

  3. Beretta E, Kuang Y (1998) Global analysis in some delayed ratio-dependent predator–prey systems. Nonlinear Anal 32(4):381–408

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai L, Li X, Song X, Yu J (2007) Permanence and stability of an age-structured prey–predator system with delays. Discrete Dyn Nat Soc 2007:54861. 15 pages

    MathSciNet  Google Scholar 

  5. Chen F (2005) Periodicity in a ratio-dependent predator–prey system with stage structure for predator. J Appl Math 2:153–169

    Article  Google Scholar 

  6. Colliugs JB (1997) The effects of the functional response on the bifurcation behavior of a mite predator–prey interaction model. J Math Biol 36:149–168

    Article  MathSciNet  Google Scholar 

  7. Ding X, Jiang J (2008) Positive periodic solutions in delayed Gauss-type predator–prey systems. J Math Anal Appl 339(2):1220–1230. doi:10.1016/j.jmaa.2007.07.079

    Article  MathSciNet  MATH  Google Scholar 

  8. El-Owaidy HM, Ammar A (1988) Stable oscillations in a predator–prey model with time lag. J Math Anal Appl 130:191–199

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan M, Wang Q, Zhou X (2003) Dynamics of a nonautonomous ratio-dependent predator–prey system. Proc R Soc Edinb A 133:97–118

    Article  MATH  Google Scholar 

  10. Fan YH, Li WT, Wang LL (2004) Periodic solutions of delayed ratio-dependent predator–prey model with monotonic and no-monotonic functional response. Nonlinear Anal, Real World Appl 5(2):247–263

    Article  MathSciNet  MATH  Google Scholar 

  11. Farkas M (1984) Stable oscillations in a predator–prey model with time lag. J Math Anal Appl 102:175–188

    Article  MathSciNet  MATH  Google Scholar 

  12. Garvie M (2007) Finite-difference schemes for reaction–diffusion equations modelling predator–prey interactions in MATLAB. Bull Math Biol 69(3):931–956

    Article  MathSciNet  MATH  Google Scholar 

  13. Ge Z, He Y (2008) Diffusion effect and stability analysis of a predator–prey system described by a delayed reaction–diffusion equations. J Math Anal Appl 339(2):1432–1450. doi:10.1016/j.jmaa.2007.07.060

    Article  MathSciNet  MATH  Google Scholar 

  14. Gourley SA, Kuang Y (2004) A stage structured predator–prey model and its dependence on maturation delay and death rate. J Math Biol 4:188–200

    MathSciNet  Google Scholar 

  15. Harrison GW (1979) Global stability of predator–prey interactions. J Math Biol 8:159–171

    Article  MathSciNet  MATH  Google Scholar 

  16. Hastings A (1983) Age dependent predation is not a simple process. I. Continuous time models. Theor Popul Biol 23:347–362

    Article  MathSciNet  MATH  Google Scholar 

  17. Hsu SB, Huang TW (1995) Global stability for a class of predator–prey systems. SIAM J Appl Math 55(3):763–783

    Article  MathSciNet  MATH  Google Scholar 

  18. Huo HF, Li WT (2004) Periodic solution of a delayed predator–prey system with Michaelis–Menten type functional response. J Comput Appl Math 166:453–463

    Article  MathSciNet  MATH  Google Scholar 

  19. Ji C, Jiang D, Li X (2011) Qualitative analysis of a stochastic ratio-dependent predator–prey system. J Comput Appl Math 235:1326–1341

    Article  MathSciNet  MATH  Google Scholar 

  20. Ko W, Ahn I (2013) A diffusive one-prey and two-competing-predator system with a ratio-dependent functional response: I. Long time behavior and stability of equilibria. J Math Anal Appl 397(1):9–28

    Article  MathSciNet  MATH  Google Scholar 

  21. Ko W, Ahn I (2013) A diffusive one-prey and two-competing-predator system with a ratio-dependent functional response: II. Stationary pattern formation. J Math Anal Appl 397(1):29–45

    Article  MathSciNet  MATH  Google Scholar 

  22. Korobeinikov A (2009) Stability of ecosystem: global properties of a general predator–prey model. IMA J Math Appl Med Biol 26(4):309–321

    Article  MathSciNet  MATH  Google Scholar 

  23. Liao X, Zhou Sh, Ouyang Z (2007) On a stoichiometric two predators on one prey discrete model. Appl Math Lett 20:272–278

    Article  MathSciNet  MATH  Google Scholar 

  24. Peschel M, Mende W (1986) The predator–prey model: do we live in a Volterra world. Akademie-Verlag, Berlin

    MATH  Google Scholar 

  25. Ruan S, Xiao D (2001) Global analysis in a predator–prey system with nonmonotonic functional response. SIAM J Appl Math 61:1445–1472

    Article  MathSciNet  MATH  Google Scholar 

  26. Shaikhet L (1998) Stability of predator–prey model with aftereffect by stochastic perturbations. Stab Control: Theory Appl 1(1):3–13

    MathSciNet  Google Scholar 

  27. Shaikhet L (2011) Lyapunov functionals and stability of stochastic difference equations. Springer, London

    Book  MATH  Google Scholar 

  28. Shi X, Zhou X, Song X (2010) Dynamical properties of a delay prey-predator model with disease in the prey species only. Discrete Dyn Nat Soc. Article ID 196204, 16 pages

    Google Scholar 

  29. Song XY, Chen LS (2002) Optimal harvesting and stability for a predator–prey system with stage structure. Acta Math Appl Sin 18(3):423–430 (English series)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang WD, Chen LS (1997) A predator–prey system with stage structure for predator. Comput Math Appl 33(8):83–91

    Article  MathSciNet  Google Scholar 

  31. Wang LL, Li WT (2003) Existence and global stability of positive periodic solutions of a predator–prey system with delays. Appl Math Comput 146(1):167–185

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang LL, Li WT (2004) Periodic solutions and stability for a delayed discrete ratio-dependent predator–prey system with Holling-type functional response. Discrete Dyn Nat Soc 2004(2):325–343

    Article  MATH  Google Scholar 

  33. Wang Q, Fan M, Wang K (2003) Dynamics of a class of nonautonomous semi-ratio-dependent predator–prey system with functional responses. J Math Anal Appl 278:443–471

    Article  MathSciNet  MATH  Google Scholar 

  34. Wangersky PJ, Cunningham WJ (1957) Time lag in prey–predator population models. Ecology 38(1):136–139

    Article  Google Scholar 

  35. Xiao D, Ruan S (2001) Multiple bifurcations in a delayed predator–prey system with nonmonotonic functional response. J Differ Equ 176:494–510

    Article  MathSciNet  MATH  Google Scholar 

  36. Zeng X (2007) Non-constant positive steady states of a prey–predator system with cross-diffusions. J Math Anal Appl 332(2):989–1009

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang X, Chen L, Neumann UA (2000) The stage-structured predator–prey model and optimal harvesting policy. Math Biosci 168:201–210

    Article  MathSciNet  MATH  Google Scholar 

  38. Zuo W, Wei J (2011) Stability and Hopf bifurcation in a diffusive predator–prey system with delay effect. Nonlinear Anal, Real World Appl 12(4):1998–2011

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shaikhet, L. (2013). Stability of Positive Equilibrium Point of Nonlinear System of Type of Predator–Prey with Aftereffect and Stochastic Perturbations. In: Lyapunov Functionals and Stability of Stochastic Functional Differential Equations. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00101-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00101-2_10

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00100-5

  • Online ISBN: 978-3-319-00101-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics