Skip to main content

On the Consistency of Vision-Aided Inertial Navigation

  • Chapter
Book cover Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 88))

Abstract

In this paper, we study estimator inconsistency in Vision-aided Inertial Navigation Systems (VINS). We show that standard (linearized) estimation approaches, such as the Extended Kalman Filter (EKF), can fundamentally alter the system observability properties, in terms of the number and structure of the unobservable directions. This in turn allows the influx of spurious information, leading to inconsistency. To address this issue, we propose an Observability-Constrained VINS (OC-VINS) methodology that explicitly adheres to the observability properties of the true system.We apply our approach to the Multi-State Constraint Kalman Filter (MSC-KF), and provide both simulation and experimental validation of the effectiveness of our method for improving estimator consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, T., Nieto, J., Guivant, J., Stevens, M., Nebot, E.: Consistency of the EKF-SLAM algorithm. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Beijing, China, October 9-15, pp. 3562–3568 (2006)

    Google Scholar 

  2. Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation. John Wiley & Sons, New York (2001)

    Book  Google Scholar 

  3. Bouguet, J.-Y.: Camera calibration toolbox for matlab (2006)

    Google Scholar 

  4. Bryson, M., Sukkarieh, S.: Observability analysis and active control for airborne SLAM. IEEE Trans. on Aerospace and Electronic Systems 44(1), 261–280 (2008)

    Article  Google Scholar 

  5. Castellanos, J.A., Martivez-Cantin, R., Neira, J.: Robocentric map joining: Improving the consistency of EKF-SLAM. Robotics and Autonomous Systems 55(1), 21–29 (2007)

    Article  Google Scholar 

  6. Ebcin, S., Veth, M.: Tightly-coupled image-aided inertial navigation using the unscented Kalman filter. Technical report, Air Force Institute of Technology, Dayton, OH (2007)

    Google Scholar 

  7. Hermann, R., Krener, A.: Nonlinear controllability and observability. IEEE Trans. on Automatic Control 22(5), 728–740 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hesch, J.A., Kottas, D.G., Bowman, S.L., Roumeliotis, S.I.: Observability-constrained vision-aided inertial navigation. Technical Report 2012-001, University of Minnesota, Dept. of Comp. Sci. & Eng., MARS Lab. (February 2012)

    Google Scholar 

  9. Huang, G.P., Mourikis, A.I., Roumeliotis, S.I.: A first-estimates jacobian EKF for improving SLAM consistency. In: Khatib, O., Kumar, V., Pappas, G.J. (eds.) Experimental Robotics. STAR, vol. 54, pp. 373–382. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Huang, G.P., Mourikis, A.I., Roumeliotis, S.I.: On the complexity and consistency of UKF-based SLAM. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, Kobe, Japan, May 12-17, pp. 4401–4408 (2009)

    Google Scholar 

  11. Huang, G.P., Mourikis, A.I., Roumeliotis, S.I.: Observability-based rules for designing consistent EKF SLAM estimators. Int. Journal of Robotics Research 29(5), 502–528 (2010)

    Article  Google Scholar 

  12. Isidori, A.: Nonlinear Control Systems. Springer (1989)

    Google Scholar 

  13. Jones, E.S., Soatto, S.: Visual-inertial navigation, mapping and localization: A scalable real-time causal approach. Int. Journal of Robotics Research 30(4), 407–430 (2011)

    Google Scholar 

  14. Julier, S.J., Uhlmann, J.K.: A counter example to the theory of simultaneous localization and map building. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, May 21-26, pp. 4238–4243 (2001)

    Google Scholar 

  15. Kelly, J., Sukhatme, G.S.: Visual-inertial sensor fusion: Localization, mapping and sensor-to-sensor self-calibration. Int. Journal of Robotics Research 30(1), 56–79 (2011)

    Article  Google Scholar 

  16. Li, M., Mourikis, A.I.: Improving the accuracy of EKF-based visual-inertial odometry. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, St. Paul, MN, May 14-18, pp. 828–835 (2012)

    Google Scholar 

  17. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. of the Int. Joint Conf. on Artificial Intelligence, Vancouver, B.C., Canada, August 24-28, pp. 674–679 (1981)

    Google Scholar 

  18. Martinelli, A.: Vision and IMU data fusion: Closed-form solutions for attitude, speed, absolute scale, and bias determination. IEEE Trans. on Robotics 28(1), 44–60 (2012)

    Article  MathSciNet  Google Scholar 

  19. Mirzaei, F.M., Roumeliotis, S.I.: A Kalman filter-based algorithm for IMU-camera calibration: Observability analysis and performance evaluation. IEEE Trans. on Robotics 24(5), 1143–1156 (2008)

    Article  Google Scholar 

  20. Mourikis, A.I., Roumeliotis, S.I.: A multi-state constraint Kalman filter for vision-aided inertial navigation. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, Rome, Italy, April 10-14, pp. 3565–3572 (2007)

    Google Scholar 

  21. Mourikis, A.I., Roumeliotis, S.I.: A dual-layer estimator architecture for long-term localization. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, pp. 1–8 (June 2008)

    Google Scholar 

  22. Mourikis, A.I., Trawny, N., Roumeliotis, S.I., Johnson, A.E., Ansar, A., Matthies, L.: Vision-aided inertial navigation for spacecraft entry, descent, and landing. IEEE Trans. on Robotics 25(2), 264–280 (2009)

    Article  Google Scholar 

  23. Nistér, D.: An efficient solution to the five-point relative pose problem. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Madison, WI, June 16-22, pp. 195–202 (2003)

    Google Scholar 

  24. Roumeliotis, S.I., Burdick, J.W.: Stochastic cloning: A generalized framework for processing relative state measurements. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, Washington D.C., May 11-15, pp. 1788–1795 (2002)

    Google Scholar 

  25. Shi, J., Tomasi, C.: Good features to track. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Washington, DC, June 27-July 2, pp. 593–600 (1994)

    Google Scholar 

  26. Strelow, D.W.: Motion estimation from image and inertial measurements. PhD thesis, Carnegie Mellon University, Pittsburgh, PA (November 2004)

    Google Scholar 

  27. Trawny, N., Roumeliotis, S.I.: Indirect Kalman filter for 3D attitude estimation. Technical Report 2005-002, University of Minnesota, Dept. of Comp. Sci. & Eng., MARS Lab. (March 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios G. Kottas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kottas, D.G., Hesch, J.A., Bowman, S.L., Roumeliotis, S.I. (2013). On the Consistency of Vision-Aided Inertial Navigation. In: Desai, J., Dudek, G., Khatib, O., Kumar, V. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 88. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00065-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00065-7_22

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00064-0

  • Online ISBN: 978-3-319-00065-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics