Skip to main content

Proactively Approaching Pedestrians with an Autonomous Mobile Robot in Urban Environments

  • Chapter
Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 88))

Abstract

This paper presents a trajectory planning method enabling autonomous robots to approach people in dynamic environments to initiate a conversation proactively. It is shown how integrating human inspired parameters in optimal control based motion planning enables people to predict and read the purpose of a motion more easily.

Experimental evaluations in literature propose to incorporate human-like aspects since the intended action becomes more comprehensible for humans. Therefore, factors like approach speed, distance to the person, positioning near the person, trajectory shape, and the avoidance method are adopted from human behavior to generate motions. The presented trajectory planner is designed to improve the human-like appearance of an approach motion implementing these aspects. Human-likeness is evaluated according to naturalness and comfort of the approach behavior. By executing corresponding trajectories, the approach movement appears more natural and the intended action is easier to predict for humans.

This paper formulates the motion planning procedure as an optimal control problem. Human-like behavior is generated through specific constraints and cost. In order to achieve correct timing, appropriate trajectory shape and the desired behavior for collision avoidance in a dynamic environment, the optimization is split into three consecutive steps. An implementation of a planning algorithm for dynamic environments, capable of online replanning, is proposed. Experiments conducted with this system showed the appropriateness of speed and distance parameters. Further statistical results confirmed that the shape of a trajectory significantly affects the naturalness of an approach motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arechavaleta, G., Laumond, J., Hicheur, H., Berthoz, A.: The nonholonomic nature of human locomotion: a modeling study. In: Proc. Int. Conf. on Biomedical Robotics and Biomechatronics, pp. 158–163 (2006)

    Google Scholar 

  2. Bauer, A., Klasing, K., Lidoris, G., Mühlbauer, Q., Rohrmüller, F., Sosnowski, S., Xu, T., Kühnlenz, K., Wollherr, D., Buss, M.: The autonomous city explorer: Towards natural human-robot interaction in urban environments. Int. Journal of Social Robotics 1(2), 127–140 (2009)

    Article  Google Scholar 

  3. Bennewitz, M., Burgard, W., Thrun, S.: Learning motion patterns of persons for mobile service robots. In: Proc. Int. Conf. on Robotics and Automation, pp. 3601–3606 (2002)

    Google Scholar 

  4. Breazeal, C., Kidd, C.D., Thomaz, A.L., Hoffman, G., Berlin, M.: Effects of nonverbal communication on efficiency and robustness in human-robot teamwork. In: Proc. Int. Conf. on Intelligent Robots and Systems, pp. 708–713 (2005)

    Google Scholar 

  5. Buss, M., Carton, D., Gonsior, B., Kuehnlenz, K., Landsiedel, C., Mitsou, N., de Nijs, R., Zlotowski, J., Sosnowski, S., Strasser, E., Tscheligi, M., Weiss, A., Wollherr, D.: Towards proactive human-robot interaction in human environments. In: Proc. Int. Conf. on Cognitive Infocommunications, pp. 1–6 (2011)

    Google Scholar 

  6. Choi, J.-W., Curry, R., Elkaim, G.H.: Path planning based on bezier curve for autonomous ground vehicles. In: Advances in Electrical and Electronics Engineering - IAENG Special Edition of WCECS, pp. 158–166 (2008)

    Google Scholar 

  7. Choi, J.-W., Curry, R., Elkaim, G.H.: Smooth path generation based on bezier curves for autonomous vehicles. In: Lecture Notes in Engineering and Computer Science: Proc. of WCECS, pp. 668–673 (2009)

    Google Scholar 

  8. Choi, J.-W., Curry, R., Elkaim, G.H.: Piecewise bezier curves path planning with continuous curvature constraint for autonomous driving. In: Machine Learning and Systems Engineering. LNEE, vol. 68 (2010)

    Google Scholar 

  9. Elnagar, A.: Prediction of moving objects in dynamic environments using kalman filters. In: IEEE Int. Symp. on Computational Intel. in Robotics and Automation, pp. 414–419 (2001)

    Google Scholar 

  10. Farin, G.E.: Curves and surfaces for CAGD: a practical guide, 5th edn. Morgan Kaufmann Publishers - Academic Press (2002)

    Google Scholar 

  11. Ferguson, D., Howard, T.M., Likhachev, M.: Motion planning in urban environments. In: The DARPA Urban Challenge, pp. 61–89 (2009)

    Google Scholar 

  12. Fiorini, P., Shiller, Z.: Time optimal trajectory planning in dynamic environments. In: Proc. Int. Conf. on Robotics and Automation, pp. 1553–1558 (1996)

    Google Scholar 

  13. Fraichard, T.: Trajectory Planning in Dynamic Workspace: a ‘State-Time Space’ Approach. Technical Report RR-3545, INRIA (1998)

    Google Scholar 

  14. Foka, A.F., Trahanias, P.E.: Predictive autonomous robot navigation. In: Proc. Int. Conf. on Intelligent Robots and Systems, pp. 490–495 (2002)

    Google Scholar 

  15. Hall, E.T.: The Hidden Dimension: Man’s Use of Space in Public and Private. The Bodley Head Ltd., London (1966)

    Google Scholar 

  16. Huttenrauch, H., Severinson Eklundh, K., Green, A., Topp, E.A., Christensen, H.I.: What’s in the gap? Interaction transitions that make HRI work. In: Int. Symp. on Robot and Human Interactive Communication, pp. 123–128 (2006)

    Google Scholar 

  17. Kessler, J., Schröter, C., Gross, H.-M.: Approaching a person in a socially acceptable manner using a fast marching planner. In: ICIRA, pp. 368–377 (2011)

    Google Scholar 

  18. Kruse, T., Basili, P., Glasauer, S., Kirsch, A.: Legible robot navigation in the proximity of moving humans. In: Proc. Int. Workshop ARSO, pp. 83–88 (2012)

    Google Scholar 

  19. Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers (1991)

    Google Scholar 

  20. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)

    Google Scholar 

  21. Masehian, E., Katebi, Y.: Robot motion planning in dynamic environments with moving obstacles and target. Int. Journal of Mechanical, Industrial and Aerospace Engineering, 20–25 (2007)

    Google Scholar 

  22. Satake, S., Kanda, T., Glas, D., Imai, M., Ishiguro, H., Hagita, N.: How to approach humans? - strategies for social robots to initiate interaction. In: Proc. Int. Conf. on Human Robot Interaction, pp. 109–116 (2009)

    Google Scholar 

  23. Schulz, D., Burgard, W., Fox, D., Cremers, A.B.: Tracking multiple moving targets with a mobile robot using particle filters and statistical data association. In: Proc. Int. Conf. on Robotics and Automation, pp. 1665–1670 (2001)

    Google Scholar 

  24. Sisbot, E.A., Alami, R., Simeon, T., Dautenhahn, K., Walters, M., Woods, S., Koay, K.L., Nehaniv, C.: Navigation in the presence of humans. In: Proc. Int. Conf. on Humanoid Robots, pp. 181–188 (2005)

    Google Scholar 

  25. Sisbot, E., Marin-Urias, L., Alami, R., Simeon, T.: A human aware mobile robot motion planner. Trans. on Robotics, 874–883 (2007)

    Google Scholar 

  26. Sisbot, E., Marin-Urias, L., Broqure, X., Sidobre, D., Alami, R.: Synthesizing robot motions adapted to human presence. Int. Journal of Social Robotics 2, 329–343 (2010)

    Article  Google Scholar 

  27. Shiller, Z., Gal, O., Raz, A.: Adaptive time horizon for on-line avoidance in dynamic environments. In: Proc. Int. Conf. on Intelligent Robots and Systems, pp. 3539–3544 (2011)

    Google Scholar 

  28. Shiomi, M., Kanda, T., Glas, D., Satake, S., Ishiguro, H., Hagita, N.: Who will be the customer?: A social robot that anticipates people’s behavior from their trajectories. field trial of networked social robots in a shopping mall. In: Proc. Int. Conf. on Intelligent Robots and Systems, pp. 2846–2853 (2009)

    Google Scholar 

  29. Svenstrup, M., Tranberg, S., Andersen, H.J., Bak, T.: Pose estimation and adaptive robot behaviour for human-robot interaction. In: Proc. Int. Conf. on Robotics and Automation, pp. 3571–3576 (2009)

    Google Scholar 

  30. Takayama, L., Dooley, D., Ju, W.: Expressing thought: improving robot readability with animation principles. In: Proc. Int. Conf. on HRI, pp. 69–76 (2011)

    Google Scholar 

  31. Thompson, S., Horiuchi, T., Kagami, S.: A probabilistic model of human motion and navigation intent for mobile robot path planning. In: Proc. Int. Conf. on Autonomous Robots and Agents, pp. 663–668 (2009)

    Google Scholar 

  32. Walters, M., Dautenhahn, K., Koay, K., Kaouri, C., te Boekhorst, R., Nehaniv, C., Werry, I., Lee, D.: Close encounters: Spatial distances between people and a robot of mechanistic appearance. In: Proc. Int. Conf. on Humanoid Robots, pp. 450–455 (2005)

    Google Scholar 

  33. Walters, M., Koay, K., Woods, S., Syrdal, D., Dautenhahn, K.: Robot to human approaches: preliminary results on comfortable distances and preferences. In: Symp. Multidisciplinary Collaboration for Socially Assistive Robotics, pp. 103–109 (2007)

    Google Scholar 

  34. Wilkie, D., van den Berg, J., Manocha, D.: Generalized velocity obstacles. In: Proc. Int. Conf. on Intelligent Robots and Systems, pp. 5573–5578 (2009)

    Google Scholar 

  35. Woo, H.J., Park, S.B., Kim, J.H.: Research of the optimal path planning methods for unmanned ground vehicle in darpa urban challenge. In: Proc. Int. Conf. on Control, Automation and Systems, pp. 586–589 (2008)

    Google Scholar 

  36. Woods, S., Walters, M., Koay, K., Dautenhahn, K.: Methodological issues in HRI: A comparison of live and video-based methods in robot to human approach direction trials. In: Proc. Int. Symp. on Robot and Human Interactive Communication, pp. 109–116 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Carton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carton, D., Turnwald, A., Wollherr, D., Buss, M. (2013). Proactively Approaching Pedestrians with an Autonomous Mobile Robot in Urban Environments. In: Desai, J., Dudek, G., Khatib, O., Kumar, V. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 88. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00065-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00065-7_15

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00064-0

  • Online ISBN: 978-3-319-00065-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics