Skip to main content

Experimental Multi-Vehicle Path Coordination under Communication Connectivity Constraints

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 88))

Abstract

The main contribution of this paper is the experimental validation of a decentralized Receding Horizon Mixed Integer Nonlinear Programming (RH-MINLP) framework that can be used to solve the Multi-Vehicle Path Coordination (MVPC) problem. The MVPC problem features path-constrained vehicles that begin their transit from a fixed starting point and move towards a goal point along fixed paths so as to avoid collisions with other robots and static obstacles. This framework allows to solve for time optimal velocity profiles for such robots in the presence of constraints on kinematics, dynamics, collision avoidance, and inter-robot communication connectivity. Experiments involving up to five (5) robots operating in a reasonably complex workspace are reported. Results demonstrate the effect of communication connectivity requirements on robot velocity profiles and the effect of sensing and actuation noise on the path-following performance of the robots. Typically, the optimization improved connectivity at no appreciable cost in journey time, as measured by the time of arrival of the last-arriving robot.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)

    Book  Google Scholar 

  2. Todt, E., Raush, G., Sukez, R.: Analysis and Classification of Multiple Robot Coordination Methods. In: 2000 IEEE International Conference on Robotics and Automation (ICRA), pp. 3158–3163. IEEE Press, San Francisco (2000)

    Google Scholar 

  3. O’ Donnell, P.A., Lozano-Perez, T.Z.: Deadlock-free and collision-free coordination of two robot manipulators. In: 1989 IEEE International Conference on Robotics and Automation (ICRA), Scottsdale, pp. 484–489. IEEE Press (1989)

    Google Scholar 

  4. LaValle, S., Hutchinson, S.: Optimal motion planning for multiple robots having independent goals. IEEE Transactions on Robotics and Automation 14, 912–925 (1998)

    Article  Google Scholar 

  5. Simeon, T., Leroy, S., Laumond, J.: Path coordination for multiple mobile robots: a resolution-complete algorithm. IEEE Transactions on Robotics and Automation 18, 42–49 (2002)

    Article  Google Scholar 

  6. Peng, J., Akella, S.: Coordinating Multiple Robots with Kinodynamic Constraints along Specified Paths. The Int. J. of Robotics Research 24, 295–310 (2005)

    Article  Google Scholar 

  7. Abichandani, P., Benson, H.Y., Kam, M.: Multi-Vehicle Path Coordination under Communication Constraints. In: 2008 American Control Conference (ACC), Seattle, pp. 650–656. IEEE Press (2008)

    Google Scholar 

  8. Abichandani, P., Benson, H.Y., Kam, M.: Multi-Vehicle Path Coordination in Support of Communication. In: 2009 IEEE International Conference on Robotics and Automation (ICRA), Kobe, pp. 3237–3244. IEEE Press (2009)

    Google Scholar 

  9. Abichandani, P., Benson, H.Y., Kam, M.: Decentralized Multi-Vehicle Path Coordination under Communication Constraints. In: 2011 International Conference on Robotic Systems (IROS), San Francisco, pp. 2306–2313 (2011)

    Google Scholar 

  10. Abichandani, P., Ford, G., Benson, H.Y., Kam, M.: Mathematical Programming for Multi-Vehicle Motion Planning Problems. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), St. Paul, pp. 3315–3322. IEEE Press (2012)

    Google Scholar 

  11. Schouwenaars, T., How, J., Feron, E.: Decentralized Cooperative Trajectory Planning of Multiple Aircraft with Hard Safety Guarantees. In: 2004 AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence (2004)

    Google Scholar 

  12. Mellinger, D., Kushleyev, A., Kumar, V.: Mixed-Integer Quadratic Program Trajectory Generation for Heterogeneous Quadrotor Teams. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), St. Paul, pp. 477–483. IEEE Press (2012)

    Google Scholar 

  13. Benson, H.Y.: Using Interior-Point Methods within an Outer Approximation Framework for Mixed Integer Nonlinear Programming. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, The IMA Volumes in Mathematics and its Applications 2012, vol. 4128, pp. 225–243. Springer, New York (2006)

    Google Scholar 

  14. Lepetic, M., Klancar, G., Skrjanc, I., Matko, D., Potocnik, P.: Time optimal path planning considering acceleration limits. Robotics and Autonomous Systems 45, 199–210 (2003)

    Article  Google Scholar 

  15. Friis, H.T.: A Note on a Simple Transmission Formula. In: Proceedings of the 1946 IRE, vol. 34, pp. 254–256 (1946)

    Google Scholar 

  16. Bemporad, A., Morari, M.: Control of Systems Integrating Logic, Dynamics, and Constraints. Automatica 35, 407–427 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Benson, H.Y.: MILANO: Mixed-Integer Linear and Nonlinear Optimizer, http://www.pages.drexel.edu/~hvb22/milano/

  18. Mattingley, J., Boyd, S.: Automatic Code Generation for Real-Time Convex Optimization. In: Eldar, Y., Palomar, D. (eds.) Convex Optimization in Signal Processing and Communications. Cambridge University Press (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Abichandani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abichandani, P., Mallory, K., Hsieh, My.A. (2013). Experimental Multi-Vehicle Path Coordination under Communication Connectivity Constraints. In: Desai, J., Dudek, G., Khatib, O., Kumar, V. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 88. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00065-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00065-7_14

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00064-0

  • Online ISBN: 978-3-319-00065-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics