Skip to main content

Statistical Mechanical Theory of Protein Folding in Water Environment

  • Chapter
  • First Online:
Exciting Interdisciplinary Physics

Abstract

We present a statistical mechanics formalism for the theoretical description of the process of protein folding\(\leftrightarrow \)unfolding transition in water environment. The formalism is based on the construction of the partition function of a protein obeying two-stage-like folding kinetics. Using the statistical mechanics model of solvation of hydrophobic hydrocarbons we obtain the partition function of infinitely diluted solution of proteins in water environment. The calculated dependencies of the protein heat capacities upon temperature are compared with the corresponding results of experimental measurements for staphylococcal nuclease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Muñoz, Conformational dynamics and ensembles in protein folding. Annu. Rev. Biophys. Biomol. Struct. 36, 395–412 (2007)

    Article  Google Scholar 

  2. K.A. Dill, S.B. Ozkan, M.S. Shell, T.R. Weikl, The protein folding problem. Annu. Rev. Biophys. 37, 289–316 (2008)

    Article  ADS  Google Scholar 

  3. J.N. Onuchic, P.G. Wolynes, Theory of protein folding. Curr. Op. Struct. Biol. 14, 70–75 (2004)

    Article  Google Scholar 

  4. E. Shakhnovich, Protein folding thermodynamics and dynamics: Where physics, chemistry, and biology meet. Chem. Rev. 106, 1559–1588 (2006)

    Article  Google Scholar 

  5. N.V. Prabhu, K.A. Sharp, Protein-solvent interactions. Chem. Rev. 106, 1616–1623 (2006)

    Article  Google Scholar 

  6. A. Yakubovich, I. Solov’yov, A. Solov’yov, W. Greiner, Ab initio theory of helix\(\leftrightarrow \)coil phase transition. Eur. Phys. J. D. 46, 215–225, (2007)(arXiv:0704.3079v1 [physics.bio-ph])

    Google Scholar 

  7. A. Yakubovich, I. Solov’yov, A. Solov’yov, W. Greiner, Ab initio description of phase transitions in finite bio-nano-systems. Europhys. News 38, 10 (2007)

    Google Scholar 

  8. I. Solov’yov, A. Yakubovich, A. Solov’yov, W. Greiner, \(\alpha \)-helix\(\leftrightarrow \)random coil phase transition: analysis of ab initio theory predictions. Eur. Phys. J. D. 46, 227–240 (2008) (arXiv:0704.3085v1 [physics.bio-ph])

    Google Scholar 

  9. A. Yakubovich, I. Solov’yov, A. Solov’yov, W. Greiner, Phase transition in polypeptides: a step towards the understanding of protein folding. Eur. Phys. J. D 40, 363–367 (2006)

    Google Scholar 

  10. A. Yakubovich, I. Solov’yov, A. Solov’yov, W. Greiner, Conformational changes in glycine tri- and hexapeptide. Eur. Phys. J. D 39, 23–34 (2006)

    Article  ADS  Google Scholar 

  11. A. Yakubovich, I. Solov’yov, A. Solov’yov, W. Greiner, Conformations of glycine polypeptides. Khimicheskaya Fizika (Chemical Physics) (in Russian) 25, 11–23 (2006)

    Google Scholar 

  12. I. Solov’yov, A. Yakubovich, A. Solov’yov, W. Greiner, On the fragmentation of biomolecules: fragmentation of alanine dipeptide along the polypeptide chain. J. Exp. Theor. Phys. 103, 463–471 (2006)

    Article  ADS  Google Scholar 

  13. I. Solov’yov, A. Yakubovich, A. Solov’yov, W. Greiner, Ab initio study of alanine polypeptide chain twisting. Phys. Rev. E 73, 021916 (2006)

    Article  ADS  Google Scholar 

  14. I. Solov’yov, A. Yakubovich, A. Solov’yov, W. Greiner, Potential energy surface for alanine polypeptide chains. J. Exp. Theor. Phys. 102, 314–326 (2006)

    Article  ADS  Google Scholar 

  15. B. Noetling, D.A. Agard, How general is the nucleation condensation mechanism? Proteins 73, 754–764 (2008)

    Article  Google Scholar 

  16. S. Kumar, C.-J. Tsai, R. Nussinov, Maximal stabilities of reversible two-state proteins. Biochemistry 41, 5359–5374 (2002)

    Google Scholar 

  17. J. H. Griffith, H. Scheraga, Statistical thrmodynamics of aqueous solutions. i. water structure, solutions with non-polar solutes, and hydrophobic ineractions. J. Mol. Struc. 682, 97–113 (2004)

    Google Scholar 

  18. A. Bakk, J.S. Høye, A. Hansen, Apolar and polar solvation thermodynamics related to the protein unfolding process. Biophys. J. 82, 713–719 (2002)

    Article  ADS  Google Scholar 

  19. Y. Griko, P. Privalov, J. Aturtevant, S. Venyaminov, Cold denaturation of staphyloccocal nuclease. Proc. Natl. Acad. Sci. U.S.A 85, 3343–3347 (1988)

    Article  ADS  Google Scholar 

  20. P. Privalov, Thermodynamics of protein folding. J. Chem. Thermodyn. 29, 447–474 (1997)

    Article  Google Scholar 

  21. S. He, H.A. Scheraga, Macromolecular conformational dynamics in torsion angle space. J. Chem. Phys. 108, 271–286 (1998)

    Article  ADS  Google Scholar 

  22. S. He, H.A. Scheraga, Brownian dynamics simulations of protein folding. J. Chem. Phys. 108, 287–300 (1998)

    Article  ADS  Google Scholar 

  23. W. Scott, W. van Gunsteren, The GROMOS Software Package for Biomolecular Simulations, in Methods and Techniques in Computational Chemistry: METECC-95, ed. by E. Clementi, G. Corongiu (STEF, Cagliari, 1995), pp. 397–434

    Google Scholar 

  24. W. Cornell, P. Cieplak, C. Bayly et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Google Scholar 

  25. A. MacKerell, D. Bashford, R. Bellott et al., All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998)

    Article  Google Scholar 

  26. S. Krimm, J. Bandekar, Vibrational analysis of peptides, polypeptides, and proteins v. normal vibrations of \(\beta \)-turns. Biopolymers 19, 1–29 (1980)

    Article  Google Scholar 

  27. M. Cubrovic, O. Obolensky, A. Solov’yov, Semistiff polymer model of unfolded proteins and its application to nmr residual dipolar couplings. Eur. Phys. J. D. 51, 41–49 (2009)

    Article  ADS  Google Scholar 

  28. A. Finkelstein, O. Ptitsyn, Protein Physics: A Course of Lectures (Elsevier Books, Oxford, 2002)

    Google Scholar 

  29. G. Makhatadze, P. Privalov, Contribution to hydration to protein folding thermodynamics. I. The enthalpy of hydration. J. Mol. Biol. 232, 639–659 (1993)

    Google Scholar 

  30. W. Humphrey, A. Dalke, K. Schulten, Vmd - visual molecular dynamics. J. Molec. Graphics 14, 33–38 (1996)

    Article  Google Scholar 

  31. F.A. Cotton, E.E. Hazen Jr, M.J. Legg, Staphylococcal nuclease: Proposed mechanism of action based on structure of enzyme-thymidine 3’,5’-bisphosphate-calcium ion complex at 1.5-a resolution. Proc. Natl. Acad. Sci. U.S.A 76, 2551–2555 (1979)

    Article  ADS  Google Scholar 

  32. Protein data bank, www.rcsb.org/ (2009)

  33. J.C. Phillips, R. Braun, W. Wang et al., Scalable molecular dynamics with NAMD. J. Comp. Chem. 26, 1781–1802 (2005)

    Article  Google Scholar 

  34. R. Wade, M.H. Mazor, J.A. McCammon, F. Quiocho, A molecular dynamics study of thermodynamic and structural aspects of the hydration of cavities in proteins. Biopolymers 31, 919–931 (1991)

    Article  Google Scholar 

  35. J. Mazur, R.L. Jernican, Distance-dependent dielectric constants and their application to double-helical DNA. Biopolymers 31, 1615–1629 (1991)

    Article  Google Scholar 

  36. J.H. Griffith, H. Scheraga, Statistical thermodynamics of aqueous solutions ii.alkali halides at infinite dilution. J. Mol. Struc. 711, 33–48 (2004)

    Google Scholar 

  37. H.-X. Zhou, Residual charge interactions in unfolded staphylococcal nuclease can be explained by the gaussian-chain model. Biophys. J. 83, 2981–2986 (2002)

    Article  ADS  Google Scholar 

  38. J.P. Collman, R. Boulatov, C.J. Sunderland, L. Fu, Functional analogues of cytochrome c oxidase, myoglobin, and hemoglobin. Chem. Rev. 104, 561–588 (2004)

    Article  Google Scholar 

  39. D. Shortle, M.S. Ackerman, Persistence of native-like topology in a denatured protein in 8 m urea. Science 293, 487–489 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

A.Y. thanks Stiftung Polytechnische Gesellschaft Frankfurt am Main for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Yakubovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yakubovich, A.V., Solov’yov, A.V., Greiner, W. (2013). Statistical Mechanical Theory of Protein Folding in Water Environment . In: Greiner, W. (eds) Exciting Interdisciplinary Physics. FIAS Interdisciplinary Science Series. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00047-3_39

Download citation

Publish with us

Policies and ethics