Skip to main content

Crystalline Undulator: Current Status and Perspectives

  • Chapter
  • First Online:
Exciting Interdisciplinary Physics

Part of the book series: FIAS Interdisciplinary Science Series ((FIAS))

  • 1731 Accesses

Abstract

Recent advances in the theory of novel sources of hard electromagnetic radiation,—a crystalline undulator (CU) and a Crystalline Undulator based Laser (CUL), are reviewed. The operating principle of CU is based on the channeling phenomenon. Channeling takes place if a particle enters a crystal at small angle to major crystallographic planes (or axes). The particle becomes confined by the planar or axial potential and move preferably along the plane or axis following its shape. If the planes or axes are periodically bent, the particles move along nearly sinusoidal trajectories. Similarly to what happens in an ordinary undulator, relativistic charged particles radiate electromagnetic waves in the forward direction. The advantage of CU is that due to extremely strong electrostatic fields inside the crystal the particles are steered much more effectively than by the field of the most advanced superconductive magnets. This allows one to make the period of CU two or even three orders of magnitude smaller then that of the conventional undulator. As a result the frequency of the radiation can reach the hard X-ray and gamma ray range. Similarly as it takes place in an ordinary free electron laser (FEL), the radiation becomes more powerful and coherent if the density of the particle beam is modulated along the beam direction with the period equal to the wavelength of the produced radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.V. Korol, A.V. Solov’yov, W. Greiner, J. Phys. G Part. Nucl. 24, L45–L53 (1998)

    Article  ADS  Google Scholar 

  2. A.V. Korol, A.V. Solov’yov, W. Greiner, Int. J. Mod. Phys. E 8, 49–100 (1999)

    Article  ADS  Google Scholar 

  3. A.V. Korol, A.V. Solov’yov, W. Greiner, Int. J. Mod. Phys. E 13, 867–916 (2004)

    Article  ADS  Google Scholar 

  4. A. Kostyuk, A.V. Korol, A.V. Solov’yov, W. Greiner, J. Phys. B At. Mol. Opt. Phys. 43, 151001 (2010)

    Google Scholar 

  5. A. Kostyuk, A.V. Korol, A.V. Solov’yov, W. Greiner, Nucl. Instrum. Meth. B 269, 1482–1492 (2011)

    Article  ADS  Google Scholar 

  6. A. Kostyuk, A.V. Korol, A.V. Solov’yov, W. Greiner, J. Phys. G Part. Nucl. 36, 025107 (2009)

    Article  ADS  Google Scholar 

  7. A.V. Korol, A.V. Solov’yov, W. Greiner, Lasing effect in crystalline undulators. Proc. SPIE 5974, 59740O (2005)

    Article  Google Scholar 

  8. W. Greiner, A.V. Korol, A. Kostyuk, A.V. Solov’yov, Vorrichtung und Verfahren zur Erzeugung electromagnetischer Strahlung. Application for German patent, Ref.: 10 2010 023 632.2, 14 June 2010

    Google Scholar 

  9. A. Kostyuk, A.V. Korol, A.V. Solov’yov, W. Greiner, Estimation of peak brilliance for a cryslalline undulator laser. Unpublished (2012b)

    Google Scholar 

  10. J. Lindhard, Influence of crystal lattice on motion of energetic charged particles. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 34, 1–64 (1965)

    Google Scholar 

  11. K. Nakamura K. et al. (Particle Data Group), Review of particle physics. J. Phys. G Part. Nucl. 37, 075021 (2010)

    Google Scholar 

  12. U.I. Uggerhøj, Rev. Mod. Phys. 77, 1131–1171 (2005)

    Article  ADS  Google Scholar 

  13. A.V. Korol, A.V. Solov’yov, W. Greiner, Int. J. Mod. Phys. E 9, 77–105 (2000)

    ADS  Google Scholar 

  14. A.V. Korol, A.V. Solov’yov, W. Greiner, Proc. SPIE 5974, 597405 (2005) (see also physics/0412101)

    Google Scholar 

  15. W. Krause, A.V. Korol, A.V. Solov’yov, W. Greiner, J. Phys. G Part. Nucl. 26, L87–L95 (2000)

    Article  ADS  Google Scholar 

  16. M. Tabrizi, A.V. Korol, A.V. Solov’yov, W. Greiner, Phys. Rev. Lett. 98, 164801 (2007)

    Article  ADS  Google Scholar 

  17. A.V. Korol, A.V. Solov’yov, W. Greiner, Channeling and Radiation in Periodically Bent Crystals Springer Series on Atomic, Optical, and Plasma Physics, Vol. 69 (Springer, Berlin, 2013)

    Google Scholar 

  18. V.N. Baier, V.M. Katkov, V.M. Strakhovenko, Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, Singapore, 1998)

    Google Scholar 

  19. V.N. Baier, V.M. Katkov, Zh. Eksp. Teor. Fiz. 53, 1478–1491 (1967) (English translation: Sov. Phys. JETP 26, 854–860 (1968))

    Google Scholar 

  20. W. Krause, A.V. Korol, A.V. Solov’yov, W. Greiner, Nucl. Instrum. Meth. A 475, 441–444 (2001)

    Article  ADS  Google Scholar 

  21. A.V. Korol, W. Krause, A.V. Solov’yov, W. Greiner, Nucl. Instrum. Meth. A 483, 455–460 (2002)

    Article  ADS  Google Scholar 

  22. D.S. Gemmell, Rev. Mod. Phys. 46, 129–227 (1974)

    Article  ADS  Google Scholar 

  23. E. Uggerhøj, Rad. Eff. Defects Solids 25, 3–21 (1993)

    Article  ADS  Google Scholar 

  24. M.A. Kumakhov, F.F. Komarov, Radiation from Charged Particles in Solids (AIP, New York, 1989)

    Google Scholar 

  25. V.M. Biryukov, YuA Chesnokov, V.I. Kotov, Crystal Channeling and its Application at High-Energy Accelerators (Springer, Berlin, 1996)

    Google Scholar 

  26. S. Bellucci, S. Bini, V.M. Biryukov, YuA Chesnokov et al., Phys. Rev. Lett. 90, 034801 (2003)

    Article  ADS  Google Scholar 

  27. V. Guidi, A. Antonioni, S. Baricordi, F. Logallo, C. Malagù, E. Milan, A. Ronzoni, M. Stefancich, G. Martinelli, A. Vomiero, Nucl. Inst. Meth. B 234, 40–46 (2005)

    Article  ADS  Google Scholar 

  28. P. Balling, J. Esberg, K. Kirsebom, D.Q.S. Le, U.I. Uggerhøj, S.H. Connell, J. Härtwig, F. Masiello, A. Rommeveaux, Nucl. Instrum. Meth. B 267, 2952–2957 (2009)

    Google Scholar 

  29. M.B.H. Breese, Nucl. Instrum. Meth. B 132, 540–547 (1997)

    Article  ADS  Google Scholar 

  30. U. Mikkelsen, E. Uggerhøj, Nucl. Instrum. Meth. B 160, 435–439 (2000)

    Article  ADS  Google Scholar 

  31. V.L. Ginzburg, Izv. Akad. Nauk SSSR 11, 165 (1947) (in Russian)

    Google Scholar 

  32. J.M.J. Madey, Stimulated emission of radiation in periodically deflected electron beam. US Patent No. 3822410 (1974)

    Google Scholar 

  33. J.M.J. Madey, J. Appl. Phys. 42, 1906–1913 (1971)

    Article  ADS  Google Scholar 

  34. E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, The Physics of Free-Electron Lasers (Springer, Berlin, 1999)

    Google Scholar 

  35. P. Schmüser, M. Dohlus, J. Rossbach, Ultraviolet and Soft X-Ray Free-Electron Lasers (Springer, Berlin, 2008)

    Google Scholar 

  36. E.G. Bessonov, Nucl. Instrum. Meth. A 528, 511–515 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) and the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kostyuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kostyuk, A., Korol, A., Solov’yov, A., Greiner, W. (2013). Crystalline Undulator: Current Status and Perspectives. In: Greiner, W. (eds) Exciting Interdisciplinary Physics. FIAS Interdisciplinary Science Series. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00047-3_32

Download citation

Publish with us

Policies and ethics