Skip to main content

Nonlinear Wavelength Conversion and Pulse Propagation in Optical Fibres

  • Chapter
  • First Online:
Ultrafast Nonlinear Optics

Part of the book series: Scottish Graduate Series ((SGS))

  • 4242 Accesses

Abstract

This chapter provides a general introduction to the origin of nonlinear processes in optical fibres, the requirements for control of fibre dispersion and practical examples of wavelength conversion, supercontinuum generation, pulse delivery and compression. The examples focus on photonic crystal fibre (PCF) which is particularly suited for nonlinear wavelength conversion in the visible and at infrared wavelengths shorter than the telecommunications windows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic, Burlington, 2007)

    Google Scholar 

  2. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, Berlin, 2008)

    Google Scholar 

  3. R. Paschotta, Encyclopedia of Laser Physics and Technology (2010), http://www.rp-photonics.com/optical_intensity.html. Accessed 3 Sept 2010

  4. J.K. Ranka, R.S. Windeler, A.J. Stentz, Efficient visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, in Conference on Lasers and Electro-Optics, CLEO ’99, Baltimore, May 1999, postdeadline paper CPD8 (1999)

    Google Scholar 

  5. J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000)

    Article  ADS  Google Scholar 

  6. J.M. Senior, Optical Fiber Communications: Principles and Practice, 3rd edn. (Prentice Hall, Harlow, 2008)

    Google Scholar 

  7. B.J. Ainslie, C.R. Day, A review of single-mode fibers with modified dispersion characteristics. IEEE J. Lightwave Technol. LT-4, 967–979 (1986)

    Article  ADS  Google Scholar 

  8. D. Mogilevtsev, T.A. Birks, P.S.J. Russell, Group-velocity dispersion in photonic crystal fibres. Opt. Lett. 23, 1662–1664 (1998)

    Article  ADS  Google Scholar 

  9. J.C. Knight, J. Arriaga, T.A. Birks, A. Ortigosa-Blanch, W.J. Wadsworth, P.S.J. Russell, Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technol. Lett. 12, 807–809 (2000)

    Article  ADS  Google Scholar 

  10. T.A. Birks, W.J. Wadsworth, P.S.J. Russell, Supercontinuum generation in tapered fibers. Opt. Lett. 25, 1415–1417 (2000)

    Article  ADS  Google Scholar 

  11. L. Tong, R.G. Gattas, J.A. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 816–819 (2003)

    Article  ADS  Google Scholar 

  12. S.G. Leon-Saval, T.A. Birks, W.J. Wadsworth, P.S.J. Russell, M.W. Mason, Supercontinuum generation in submicron fibre waveguides. Opt. Express 12, 2864–2869 (2004)

    Article  ADS  Google Scholar 

  13. J.C. Knight, Photonic crystal fibers. Nature 424, 847–851 (2003)

    Article  ADS  Google Scholar 

  14. P.S.J. Russell, Photonic crystal fibers. Science 299, 358–362 (2003)

    Article  ADS  Google Scholar 

  15. W.J. Wadsworth, A. Ortigosa-Blanch, J.C. Knight, T.A. Birks, T.-P.M. Man, P.S.J. Russell, Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source. J. Opt. Soc. Am. B 19, 2148–2155 (2002)

    Article  ADS  Google Scholar 

  16. M. Delgado-Pinar, P.J. Mosley, J.C. Knight, T.A. Birks, W.J. Wadsworth, Visible supercontinuum generation in the femtosecond regime in submicron structures. in Nonlinear Photonics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper NWD3, Karlsruhe, Germany

    Google Scholar 

  17. T.A. Birks, D. Mogilevtsev, J.C. Knight, P.St.J. Russell, J. Broeng, P.J. Roberts, J.A. West, D.C. Allan, J.C. Fajardo, The analogy between photonic crystal fibres and step index fibres. in Optical Fibre Conference, OSA Technical Digest (Optical Society of America, 1999), paper FG4-1, San Diego, USA, pp. 114–116

    Google Scholar 

  18. T.A. Birks, J.C. Knight, P.S.J. Russell, Endlessly single-mode photonic crystal fibre. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  Google Scholar 

  19. W.J. Wadsworth, N. Joly, J.C. Knight, T.A. Birks, F. Biancalana, P.S.J. Russell, Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres. Opt. Express 12, 299–309 (2004)

    Article  ADS  Google Scholar 

  20. CUDOS MOF utilities. University of Sydney (2011). http://sydney.edu.au/science/physics/cudos/research/mofsoftware.shtml. Accessed 28 July 2011

  21. K. Saitoh, M. Koshiba, Empirical relations for simple design of photonic crystal fibers. Opt. Express 13, 267–274 (2005)

    Article  ADS  Google Scholar 

  22. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  ADS  Google Scholar 

  23. R.d.L. Kronig, On the theory of dispersion of X-rays. J. Opt. Soc. Am. 12, 547–556 (1926)

    Article  ADS  Google Scholar 

  24. W. Huang, M.G. Welch, P.J. Mosley, B.J. Mangan, W.J. Wadsworth, J.C. Knight, Ultrashort pulse delivery in hollow-core photonic bandgap fiber at 540 nm. in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CWC3, San Jose, USA

    Google Scholar 

  25. F. Luan, J.C. Knight, P.S.J. Russell, S. Campbell, D. Xiao, D.T. Reid, B.J. Mangan, D.P. Williams, P.J. Roberts, Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers. Opt. Express 12, 835–840 (2004)

    Article  ADS  Google Scholar 

  26. F. Gèrôme, P. Dupriez, J. Clowes, J.C. Knight, W.J. Wadsworth, High power tunable femtosecond soliton source using hollow-core photonic bandgap fiber, and its use for frequency doubling. Opt. Express 16, 2381–2386 (2008)

    Article  ADS  Google Scholar 

  27. D.G. Ouzounov, F.R. Ahmad, D. Müller, N. Venkataraman, M.T. Gallagher, M.G. Thomas, J. Silcox, K.W. Koch, A.L. Gaeta, Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702–1704 (2003)

    Article  ADS  Google Scholar 

  28. M.G. Welch, Compressing and Propagating Solitons in Hollow Core Photonic Crystal Fibre. PhD thesis (University of Bath, Bath, 2010). http://opus.bath.ac.uk/25235/

  29. L.F. Mollenauer, R.H. Stolen, J.P. Gordon, Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980)

    Article  ADS  Google Scholar 

  30. K. Tajima, Compensation of soliton broadening in nonlinear optical fibers with loss. Opt. Lett. 12, 54–56 (1987)

    Article  ADS  Google Scholar 

  31. H. Kuehl, Solitons on an axially nonuniform optical fiber. J. Opt. Soc. Am. B 5, 709–713 (1988)

    Article  ADS  Google Scholar 

  32. F. Gérôme, K. Cook, A.K. George, W.J. Wadsworth, J.C. Knight, Delivery of sub-100 fs pulses through 8 m of hollow-core fiber using soliton compression. Opt. Express 15, 7126–7131 (2007)

    Article  ADS  Google Scholar 

  33. J. Lægsgaard, P.J. Roberts, Theory of adiabatic pressure-gradient soliton compression in hollow-core photonic bandgap fibers. Opt. Lett. 34, 3710–3712 (2009)

    Article  ADS  Google Scholar 

  34. M.G. Welch, K. Cook, R. Amezcua-Correa, F. Gérôme, W.J. Wadsworth, A.V. Gorbach, D.V. Skryabin, J.C. Knight, Solitons in hollow core photonic crystal fiber: engineering nonlinearity and compressing pulses. IEEE J. Lightwave Technol. 27, 1644–1652 (2009)

    Article  ADS  Google Scholar 

  35. A.V. Gorbach, D.V. Skryabin, Soliton self-frequency shift, non-solitonic radiation and self-induced transparency in air-core fibers. Opt. Express 16, 4858–4865 (2008)

    Article  ADS  Google Scholar 

  36. D.G. Ouzounov, C.J. Hensley, A.L. Gaeta, N. Venkateraman, M.T. Gallagher, K.W. Koch, Soliton pulse compression in photonic band-gap fibers. Opt. Express 13, 6153–6159 (2005)

    Article  ADS  Google Scholar 

  37. W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.S.J. Russell, F.G. Omenetto, A. Efimov, A.J. Taylor, Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres. Nature 424, 511–515 (2003). doi:10.1038/nature01798

    Article  ADS  Google Scholar 

  38. J.D. Harvey, R. Leonhardt, S. Coen, G.K.L. Wong, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber. Opt. Lett. 28, 2225–2227 (2003)

    Article  ADS  Google Scholar 

  39. J. Hansryd, P.A. Andrekson, Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency. IEEE Photonics Technol. Lett. 13, 194–196 (2001)

    Article  ADS  Google Scholar 

  40. P.A. Andersen, T. Tokle, Y. Geng, C. Peucheret, P. Jeppesen, Wavelength conversion of a 40-Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber. IEEE Photonics Technol. Lett. 17, 1908–1910 (2005)

    Article  ADS  Google Scholar 

  41. J.E. Sharping, M. Fiorentino, P. Kumar, R.S. Windeler, Optical parametric oscillator based on four-wave mixing in microstructure fiber. Opt. Lett. 27, 1675–1677 (2002)

    Article  ADS  Google Scholar 

  42. M. Seefeldt, A. Heuer, R. Menzel, Compact white-light source with an average output power of 2.4 W and 900 nm spectral bandwidth. Opt. Commun. 216, 199–202 (2003)

    Article  ADS  Google Scholar 

  43. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, A. Tünnermann, Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber. Opt. Lett. 34, 3499–3501 (2009)

    Article  ADS  Google Scholar 

  44. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, A. Tünnermann, Efficient high power generation of pulsed red light via four-wave-mixing in a large-mode-area, endlessly single-mode photonic-crystal fiber. in CLEO/Europe and EQEC 2009 Conference Digest (Optical Society of America, 2009), paper CJ5_5 (Munich, Germany, 2009) http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_E-2009-CJ5_5

  45. L. Lavoute, J.C. Knight, P. Dupriez, W.J. Wadsworth, High power red and near-IR generation using four wave mixing in all integrated fibre laser systems. Opt. Express 18, 16193–16205 (2010)

    Article  Google Scholar 

  46. L. Lavoute, W.J. Wadsworth, J.C. Knight, Efficient four wave mixing from a picosecond fibre laser in photonic crystal fibre. in CLEO/Europe and EQEC 2009 Conference Digest (Optical Society of America, 2009), paper CJ5_4 (Munich, Germany, 2009)

    Google Scholar 

  47. P.G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A.V. Sergienko, Y.H. Shih, New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995)

    Article  ADS  Google Scholar 

  48. X. Li, P.L. Voss, J.E. Sharping, P. Kumar, Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett. 94, 053601 (2005)

    Article  ADS  Google Scholar 

  49. J.E. Sharping, J. Chen, X.Y. Li, P. Kumar, R.S. Windeler, Quantum-correlated twin photons from microstructure fiber. Opt. Express 12, 3086–3094 (2004)

    Article  ADS  Google Scholar 

  50. J. Fan, A. Migdall, A broadband high spectral brightness fiber-based two-photon source. Opt. Express 15, 2915–2920 (2007)

    Article  ADS  Google Scholar 

  51. J. Fulconis, O. Alibart, J.L. O’Brien, W.J. Wadsworth, J.G. Rarity, Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. Phys. Rev. Lett. 99, 120501 (2007)

    Article  ADS  Google Scholar 

  52. C. Söller, B. Brecht, P.J. Mosley, L.Y. Zang, A. Podlipensky, N.Y. Joly, P.S.J. Russell, C. Silberhorn, Bridging visible and telecom wavelengths with a single-mode broadband photon pair source. Phys. Rev. A 81, 031801(R) (2010)

    Article  ADS  Google Scholar 

  53. J.G. Rarity, J. Fulconis, J. Duligall, W.J. Wadsworth, P.S.J. Russell, Photonic crystal fiber source of correlated photon pairs. Opt. Express 13, 534–544 (2005)

    Article  ADS  Google Scholar 

  54. A.R. McMillan, J. Fulconis, M. Halder, C. Xiong, J.G. Rarity, W.J. Wadsworth, Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm. Opt. Express 17, 6156–6165 (2009)

    Article  ADS  Google Scholar 

  55. A. Kudlinski, A. Mussot, Visible cw-pumped supercontinuum. Opt. Lett. 33, 2407–2409 (2008)

    Article  ADS  Google Scholar 

  56. C. Xia, Z. Xu, M.N. Islam, F.L. Terry, M.J. Freeman, A. Zakel, J. Mauricio, 10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation. IEEE. J. Sel. Top. Quantum 15, 422–434 (2009)

    Article  Google Scholar 

  57. J.W. Nicholson, A.D. Yablon, P.S. Westbrook, K.S. Feder, M.F. Yan, High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation. Opt. Express 12, 3025–3034 (2004)

    Article  ADS  Google Scholar 

  58. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves. Nature 450, 1054–1057 (2007)

    Article  ADS  Google Scholar 

  59. D.A. Jones, S.A. Diddams, J.K. Ranka, A. Stentz, R.S. Windeler, J.L. Hall, S.T. Cundiff, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000)

    Article  ADS  Google Scholar 

  60. R. Holzwarth, J. Reichert, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, An optical frequency synthesiser for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000)

    Article  ADS  Google Scholar 

  61. J.M. Dudley, S. Coen, Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Opt. Lett. 27, 1180–1182 (2002)

    Article  ADS  Google Scholar 

  62. G. Humbert, W.J. Wadsworth, S.G. Leon-Saval, J.C. Knight, T.A. Birks, P.S.J. Russell, M.J. Lederer, D. Kopf, K. Wiesauer, E.I. Breuer, D. Stifter, Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. Opt. Express 14, 1596–1603 (2006)

    Article  ADS  Google Scholar 

  63. L.E. Hooper, P.J. Mosley, A.C. Muir, W.J. Wadsworth, J.C. Knight, Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion. Opt. Express 19, 4902–4907 (2011)

    Article  ADS  Google Scholar 

  64. A.V. Gorbach, D.V. Skryabin, Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres. Nat. Photonics 1, 653–657 (2007)

    Article  ADS  Google Scholar 

  65. J.M. Stone, J.C. Knight, Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser. Opt. Express 16, 2670–2675 (2008)

    Article  ADS  Google Scholar 

  66. A. Kudlinski, A.K. George, J.C. Knight, J.C. Travers, A.B. Rulkov, S.V. Popov, J.R. Taylor, Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. Opt. Express 14, 5715–5722 (2006)

    Article  ADS  Google Scholar 

  67. O. Humbach, H. Fabian, U. Grzesik, U. Haken, W. Heitmann, Analysis of OH absorption bands in synthetic silica. J. Non-Cryst. Solids 203, 19–26 (1996)

    Article  ADS  Google Scholar 

  68. F.G. Omenetto, N.A. Wolchover, M.R. Wehner, M. Ross, A. Efimov, A.J. Taylor, V.V.R.K. Kumar, A.K. George, J.C. Knight, N.Y. Joly, P.S.J. Russell, Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers. Opt. Express 14, 4928–4934 (2006)

    Article  ADS  Google Scholar 

  69. M.R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, B.J. Eggleton, Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide. Opt. Express 16, 14938–14944 (2008)

    Article  ADS  Google Scholar 

  70. P. Domachuk, N.A. Wolchover, M. Cronin-Golomb, A. Wang, A.K. George, C.M.B. Cordeiro, J.C. Knight, F.G. Omenetto, Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt. Express 16, 7161–7168 (2008)

    Article  ADS  Google Scholar 

  71. M. El-Amraoui, J. Fatome, J.C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C.F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, G. Renversez, Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers. Opt. Express 18, 4547–4556 (2010)

    Article  Google Scholar 

  72. C. Xiong, A. Witkowska, S.G. Leon-Saval, T.A. Birks, W.J. Wadsworth, Enhanced visible continuum generation from a microchip 1064 nm laser. Opt. Express 14, 6188–6193 (2006)

    Article  ADS  Google Scholar 

  73. J.C. Travers, S.V. Popov, J.R. Taylor, Extended blue supercontinuum generation in cascaded holey fibers. Opt. Lett. 30, 3132–3134 (2005)

    Article  ADS  Google Scholar 

  74. J.C. Travers, A.B. Rulkov, S.V. Popov, J.R. Taylor, A. Kudlinski, A.K. George, J.C. Knight, Multi-watt supercontinuum generation from 0.3 to 2.4 μm in PCF tapers. in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference CLEO/QELS, OSA Technical Digest Series (Optical Society of America, 2007), paper JTuB2 (Baltimore, USA, 2007)

    Google Scholar 

  75. P.A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, P. Nérin, White-light supercontinuum generation in normally dispersive optical fiber using original multiwavelength pumping system. Opt. Express 12, 4366–4371 (2004)

    Article  ADS  Google Scholar 

  76. C. Xiong, Z. Chen, W.J. Wadsworth, Dual-wavelength-pumped supercontinuum generation in an all-fiber device. IEEE J. Lightwave Technol. 27, 1638–1643 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Wadsworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wadsworth, W.J. (2013). Nonlinear Wavelength Conversion and Pulse Propagation in Optical Fibres. In: Thomson, R., Leburn, C., Reid, D. (eds) Ultrafast Nonlinear Optics. Scottish Graduate Series. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00017-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00017-6_9

  • Published:

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00016-9

  • Online ISBN: 978-3-319-00017-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics