Skip to main content

Role of Ethylene and Bacterial ACC Deaminase in Nodulation of Legumes

  • Chapter
Microbes for Legume Improvement

Abstract

Rhizobia–legume symbiosis is a complex process involving a set of plant and bacterial genes leading to formation and development of root nodules. Plant hormone, ethylene plays an important role in regulating nodule developmental processes and signaling networks in response to a wide range of biotic and abiotic stresses. Ethylene is known as a negative regulator of nodulation. Several studies have shown that inoculation of nitrogen-fixing bacteria collectively called rhizobia leads to a temporal stimulation of ethylene production that suppresses nodule formation. Application of exogenous ethylene gas or its precursors and/or ethylene-releasing compounds also reduces nodulation on legumes. Nonetheless, inhibitors of ethylene synthesis or its physiological action have been found to promote nodulation in legumes. Plant growth-promoting rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase can increase nodulation in legumes by degrading ACC (an immediate precursor of ethylene) and thus, by lowering ethylene concentrations in the plant. In this chapter, the role of ethylene and bacterial ACC deaminase in nodulation of legumes is reviewed critically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology. Academic, New York

    Google Scholar 

  • Andrea JF, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Poll 147:540–545

    Article  CAS  Google Scholar 

  • Arshad M, Frakenberger WT Jr (2002) Ethylene: agricultural sources and applications. Kluwer/Academic Publishers, New York

    Google Scholar 

  • Bajgiran AR, Lakzian A, Rastin NS (2008) Elongation of shoot and root in wheat by ACC deaminase of Rhizobium spp. indigenous to soils of Iran. Int J Agr Biol 10:481–486

    CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488

    Article  PubMed  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P, Anca A (2009) Plants mycorrhizal fungi, and bacteria: a network of interactions. Ann Rev Microbiol 63:363–83

    Article  CAS  Google Scholar 

  • Caba JM, Poveda JL, Gresshoff PM, Ligero F (1999) Differential sensitivity of nodulation to ethylene in soybean cv. Bragg and a super-nodulating mutant. New Phytol 142:233–242

    Article  CAS  Google Scholar 

  • Caba JM, Recalde L, Ligero F (1998) Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa. Plant Cell Environ 21:87–93

    Article  CAS  Google Scholar 

  • Charon C, Sousa C, Crespi M, Kondorosi A (1999) Alteration of enod40 expression modifies Medicago truncatula root nodule development induced by Sinorhizobium meliloti. Plant J 11:1953–1965

    CAS  Google Scholar 

  • Collavino M, Riccillo PM, Grasso DH, Crespi M, Aguilar OM (2005) GuaB activity is required in Rhizobium tropici during the early stages of nodulation of determinate nodules but is dispensable for the Sinorhizobium meliloti - Alfalfa symbiotic interaction. Mol Plant Microbe Interact 18:742–750

    Article  PubMed  CAS  Google Scholar 

  • Contesto C, Desbrosses G, Lefoulon C, Bena FG (2008) Effects of rhizobacterial ACC-deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth promoting rhizobacteria. Plant Sci 175:178–189

    Article  CAS  Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103:1355–1365

    Article  PubMed  CAS  Google Scholar 

  • Csukasi F, Merchante D, Valpuesta V (2009) Modification of plant hormone levels and signaling as a tool in plant biotechnology. Biotechnol J 4:1293–1304

    Article  PubMed  CAS  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol Res 159:371–394

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Oldroyd GED (2009) Positioning the nodule, the hormone dictum. Plant Signal Behav 4:89–93

    Article  PubMed  CAS  Google Scholar 

  • D’Haeze W, Rycke RD, Mathis R, Goormachtig S, Pagnotta S, Verplancke C, Capoen W, Holsters M (2003) Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. PNAS 100:11789–11794

    Article  PubMed  CAS  Google Scholar 

  • Drennan DSH, Norton C (1972) The effect of ethrel on nodulation in Pisum sativum L. Plant Soil 36:53–57

    Article  CAS  Google Scholar 

  • Duan J, MĂĽller KM, Charles TC, Vesely S, Glick BR (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436

    Article  PubMed  CAS  Google Scholar 

  • Duodu S, Bhuvaneswari TV, Stokkermans TJ, Peters NK (1999) A positive role for rhizobitoxine in Rhizobium-legume symbiosis. Mol Plant Microbe Interact 12:1082–1089

    Article  CAS  Google Scholar 

  • Farajzadeh D, Aliasgharzad N, Bashir NS, Yakhchali B (2010) Cloning and characterization of a plasmid encoded ACC deaminase from an indigenous Pseudomonas fluorescens FY32. Curr Microbiol 61:37–43

    Article  PubMed  CAS  Google Scholar 

  • Fearn JC, LaRue TA (1991) Ethylene inhibitors restore nodulation of sim-5 mutants of Pisum sativum L. cv. Sparkle. Plant Physiol 96:239–246

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Lopez M, Goormachtig S, Gao M, D’Haeze W, van Montagu M (1998) Ethylene-mediated phenotypic plasticity in root nodule development on Sesbania rostrata. Plant Biol 95:2724–12728

    Google Scholar 

  • Figueiredo MVB, Martinez CR, Burity HA, Chanway CP (2008) Plant growth promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). World J Microbiol Biotechnol 24:1187–1193

    Article  CAS  Google Scholar 

  • Frankenberger WT Jr, Arshad M (1995) Phytohormones in soils: microbial production and function. Marcel Dekker Inc, New York

    Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Gonzalez-Rizzo S, Crespi M, Frugler F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium melilotim. Plant Cell 18:2680–2693

    Article  PubMed  CAS  Google Scholar 

  • Goormachtig S, Capoen W, James EK, Holsters M (2004) Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation. PNAS 101:6303–6308

    Article  PubMed  CAS  Google Scholar 

  • Goodlass G, Smith KA (1979) Effect of ethylene on root extension and nodulation in pea (Pisum sativum L.) and white clover (Trifolium repens L.). Plant Soil 51:387–395

    Article  CAS  Google Scholar 

  • Gresshoff PM, Rose RJ, Singh M, Rolfe BG (2003) Symbiosis signals. Todays’ life science. http://cirl.rsbs.anu.edu.au/News/tls0503Gresshoff HR.pdf. Cited May/June 2003

  • Guinel FC, Geil RD (2002) A model for the development of rhizobial and arbuscular mycorrhizal symbiosis in legumes and its use to understand the roles of ethylene in the establishment of these two symbioses. Can J Bot 80:695–720

    Article  CAS  Google Scholar 

  • Guinel FC, LaRue TA (1992) Ethylene inhibitors partly restore nodulation to pea mutant E107 (brz). Plant Physiol 99:515–518

    Article  PubMed  CAS  Google Scholar 

  • Guinel FC, Sloetjes LL (2000) Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym16), a pleiotropic mutant that nodulates poorly and has pale green leaves. J Exp Bot 51:885–894

    Article  PubMed  CAS  Google Scholar 

  • Heidstra RW, Yang WC, Yalcin Y, Peck S, Emons AM, van Kammen A, Bisseling T (1997) Ethylene provides positional information on cortical cell division but is not involved in Nod factor-induced root hair tip growth in Rhizobium-legume interaction. Development 124:1781–1787

    PubMed  CAS  Google Scholar 

  • Hunter WJ (1993) Ethylene production by root nodules and effect of ethylene on nodulation in Glycine max. Appl Environ Microbiol 59:1947–1950

    PubMed  CAS  Google Scholar 

  • Khalid A, Arshad M, Shaharoona B, Mahmood T (2009) Plant growth promoting rhizobacteria and sustainable agriculture. In: Khan MS, Zaidi A, Musarat J (eds) Microbial strategies for crop improvement. Springer-Verleg, Berlin, pp 133–160

    Chapter  Google Scholar 

  • Khan MS, Zaidi A, Musarrat J (2009) Microbial strategies for crop improvement. Springer-Verleg, Berlin

    Book  Google Scholar 

  • Kinkema M, Scott PT, Gresshoff M (2006) Legume nodulation: successful symbiosis through short and long distance signaling. Func Plant Biol 33:707–721

    Article  CAS  Google Scholar 

  • Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505

    Article  CAS  Google Scholar 

  • Lee KH, LaRue TA (1992a) Inhibition of nodulation of pea by ethylene. Plant Physiol 99:108

    Article  Google Scholar 

  • Lee KH, LaRue TA (1992b) Exogenous ethylene inhibits nodulation of Pisum sativum L. cv. Sparkle. Plant Physiol 100:1759–1763

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, LaRue TA (1992c) Ethylene as a possible mediator of light and nitrate induced inhibition of nodulation of Pisum sativum L. cv. Sparkle. Plant Physiol 100:1334–1338

    Article  PubMed  CAS  Google Scholar 

  • Ligero F, Lluch C, Olivares J (1987) Evolution of ethylene from roots and nodulation rate of alfalfa (Medicago sativa L.) plants inoculated with Rhizobium meliloti as affected by the presence of nitrate. J Plant Physio 129:461–467

    Article  CAS  Google Scholar 

  • Ligero F, Caba JM, Lluch C, Olivares J (1991) Nitrate inhibition of nodulation can be overcome by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol 97:1221–1225

    Article  PubMed  CAS  Google Scholar 

  • Ligero F, Poveda JL, Gresshoff PM, Caba JM (1999) Nitrate inoculation in enhanced ethylene biosynthesis in soybean roots as a possible mediator of nodulation control. J Plant Physiol 154:482–488

    Article  CAS  Google Scholar 

  • Lohar D, Stiller J, Kam J, Stacey G, Gresshoff PM (2009) Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus. Ann Bot 104:277–285

    Article  PubMed  CAS  Google Scholar 

  • Lorteau MA, Ferguson BJ, Guinel FC (2001) Effects of cytokinin on ethylene production and nodulation in pea (Pisumsati_um) cv. Sparkle. Physiol Planta 112:421–428

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–56

    Article  PubMed  CAS  Google Scholar 

  • Lynch J, Brown K (2006) Plant-environment interactions. CRC, Boca Raton, FL

    Google Scholar 

  • Ma W, Charles TC, Glick BR (2004) Expression of an exogenous 1-aminocyclopropane-1-carboxylate deaminase gene in Sinorhizobium meliloti increases its ability to nodulate alfalfa. Appl Environ Microbiol 70:5891–5897

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  PubMed  CAS  Google Scholar 

  • Markwei CM, LaRue TA (1997) Phenotypic characterization of sym 21, a gene conditioning shoot-controlled inhibition of nodulation in Pisum sativum cv. Sparkle. Physiol Planta 100:927–932

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth promoting bacteria that confer resistance in tomato to salt stress. Plant Physiol Biochem 42:565–572

    Article  PubMed  CAS  Google Scholar 

  • Middleton PH, Jakab J, Penmetsa RV, Starker CG, Doll J, Kalo P, Prabhu R, Marsh JF, Mitra RM, Kereszt A, Dudas B, Bosch KV, Long SR, Cook DR, Kiss GB, Oldroyda GED (2007) An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell 19:1221–1234

    Article  PubMed  CAS  Google Scholar 

  • Musarrat J, Al Khedhairy AA, Al-Arifi S, Khan MS (2009) Role of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium-legume symbiosis. In: Khan MS, Zaidi A, Musarat J (eds) Microbial strategies for crop improvement. Springer-Verleg, Berlin, pp 63–83

    Chapter  Google Scholar 

  • Maekawa-Yoshikawa M, Muller J, Takeda N, Maekawa T, Sato S, Tabata S, Perry J, Wang TL, Groth M, Brachmann A, Parniske M (2009) The Temperature-sensitive brush mutant of the legume Lotus japonicus reveals a link between root development and nodule infection by rhizobia. Plant Physiol 149:1785–1796

    Article  PubMed  CAS  Google Scholar 

  • Nie L, Shah S, Rashid A, Burd GI, Dixon GD, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    Article  CAS  Google Scholar 

  • Nukui N, Ezura H, Minamisawa K (2004) Transgenic Lotus japonicus with an ethylene receptor gene Cm-ERS1/H70A enhances formation of infection threads and nodule primordia. Plant Cell Physiol 45:427–35

    Article  PubMed  CAS  Google Scholar 

  • Nukui N, Ezura H, Yohsshi K, Yasuta T, Minamisawa K (2000) Effect of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol 41:893–897

    Article  PubMed  CAS  Google Scholar 

  • Nukui N, Minamisawa K, Ayabe SI, Aoki T (2006) Expression of the 1-aminocyclopropane-1-carboxylate deaminase gene requires symbiotic nitrogen fixing regulator gene nifA2 in Mesorhizobium loti MAFF303099. Appl Environ Microbiol 72:4964–4969

    Article  PubMed  CAS  Google Scholar 

  • Okazaki S, Nukui N, Sugawara M, Minamisawa K (2004) Rhizobial strategies to enhance symbiotic interactions: rhizobiotoxine and 1-aminocyclopropane-1-carboxylate deaminase. Microbes Environ 19:99–111

    Article  Google Scholar 

  • Oldroyd GED, Engstrom EM, Long SR (2001) Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849

    PubMed  CAS  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–46

    Article  PubMed  CAS  Google Scholar 

  • Owens LD, Thompson JF, Fennessy PV (1972) Dihydrorhizobitoxine, a new ether amino acid from Rhizobium japonicum. J Chem Soc Chem Commun 1972:715

    Article  Google Scholar 

  • Pandey P, Kang SC, Maheshwari DK (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 89:170–180

    Google Scholar 

  • Parker MA, Peters NK (2001) Rhizobitoxine production and symbiotic compatibility of Bradyrhizobium from Asian and North American lineages of Amphicarpaea. Can J Microbiol 47:1–6

    Google Scholar 

  • Patrick A, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster GTS, Genschik P (2009) Gibberellin signaling controls cell proliferation rate in Arabidopsis. Cur Biol 19:1188–1193

    Article  CAS  Google Scholar 

  • Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530

    Article  PubMed  CAS  Google Scholar 

  • Penmetsa RV, Frugoli JA, Smith LS, Long SR (2003) Dual genetic pathways controlling nodule number in Medicago truncatula. Plant Physiol 131:998–1008

    Article  PubMed  CAS  Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC-deaminase containing plant growth promoting bacteria. Can J Microbiol 47:368–372

    Article  PubMed  CAS  Google Scholar 

  • Peters NK, Crist-Esters DK (1989) Nodule formation is stimulated by the ethylene inhibitor amino ethoxy vinylglycine. Plant Physiol 91:690–693

    Article  PubMed  CAS  Google Scholar 

  • Peters NK, Crist-Esters DK (2001) Nodule formation is stimulated by the ethylene inhibitor aminoethoxyvinylglycine. Plant Physiol 41:893–897

    Google Scholar 

  • Prayitno J, Rolfe BG, Mathesius U (2006) The ethylene-insensitive sickle mutant of medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiol 142: 168–180

    Article  PubMed  CAS  Google Scholar 

  • Remans R, Croonenborghs A, Gutierrez RT, Michiels J, Vanderleyden J (2007) Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. Eur J Plant Pathol 119:341–351

    Article  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti A (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC-deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  PubMed  CAS  Google Scholar 

  • Santnerl A, Estelle M (2009) Recent advances and emerging trends in plant hormone signaling. Nature 459:1071–1078

    Article  CAS  Google Scholar 

  • Sato-Nara K, Yuhashi K, Higashi K, Hosoya K, Kubota M, Ezura H (1999) Stage and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiol 120:321–30

    Article  PubMed  CAS  Google Scholar 

  • Schmidt JS, Harper JE, Hoffman TK, Bent AF (1999) Regulation of soybean nodulation independent of ethylene signalling. Plant Physiol 119:951–959

    Article  PubMed  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    Article  PubMed  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Khalid A (2007) Differential response of etiolated pea seedling to 1-aminocyclopropane-1-carboxylate and/or L-methionine utilizing rhizobacteria. J Micrbiol 45:15–20

    CAS  Google Scholar 

  • Shahzad MS, Khalid A, Arshad M, Khalid M, Mehboob I (2008) Integrated use of plant growth promoting bacteria and P-enriched compost for improving growth, yield and nodulation of chickpea. Pak J Bot 40:1735–144

    Google Scholar 

  • Shirtliffe SJ, Vessy JK, Buttery BR, Park SJ (1996) Comparison of growth and N accumulation of common bean (Phaseolus vulgaris L.) cv. OAC Rico and its nodulation mutants, R69 and R99. Can J Plant Sci 76:73–83

    Article  Google Scholar 

  • Stearns JC, Glick BR (2003) Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol Adv 21:193–210

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Alonso JM (2009) Ethylene signaling and response: where different regulatory modules meet. Cur Opin Plant Biol 12:548–555

    Article  CAS  Google Scholar 

  • Suganuma N, Yamauchi H, Yamamoto K (1995) Enhanced production of ethylene by soybean roots after inoculation with Bradyrhizobium japonicum. Plant Sci 111:163–168

    Article  CAS  Google Scholar 

  • Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K (2006) Rhizobitoxine modulates plant microbe interactions by ethylene inhibition. Biotechnol Adv 24:382–388

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Cardoza V, Mitchell DM, Bright L, Oldroyd G, Harris JM (2006) Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J 46:961–970

    Article  PubMed  CAS  Google Scholar 

  • Tak T, van Spronsen PC, Kijne JW, van Brussel AAN, Kees Boot JM (2004) Accumulation of lipochitin oligosaccharides and NodD-activating compounds in an efficient plant-Rhizobium nodulation assay. Mol Plant Interac 17:816–823

    Article  CAS  Google Scholar 

  • Tamimi SM, Timko MP (2003) Effects of ethylene and inhibitors of ethylene synthesis and action on nodulation in common bean (Phaseolus vulgaris L.). Plant Soil 257:125–131

    Article  CAS  Google Scholar 

  • Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2006) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Sci Mag 315:104–107

    Google Scholar 

  • Tittabutr P, Awaya JD, Li QX, Borthakur D (2008) The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Syst Appl Microbiol 31:141–150

    Article  PubMed  CAS  Google Scholar 

  • Truchet G, Roche P, Lerouge P, Vasse J, Camut S, De Billy F, Prome JC, DĂ©nariĂ© J (1991) Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351:670–673

    Article  CAS  Google Scholar 

  • Uchiumi T, Oowada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima T, Saeki K, Oomori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda S, Sioya K, Abe M, Minamisawa K (2004) Expression islands clustered on symbiosis island of Mesorhizobium loti genome. J Bacteriol 186:2439–2448

    Article  PubMed  CAS  Google Scholar 

  • Valverde C, Wall LG (2005) Ethylene modulates the susceptibility of the root for nodulation in actinorhizal Discaria trinervis. Physiol Planta 124:121–131

    Article  CAS  Google Scholar 

  • van Spronsen PC, van Brussel AA, Kijne JW (1995) Nod factors produced by Rhizobium leguminosarum biovar viciae induce ethylene-related changes in root cortical cells of Vicia sativa sp nigra. Eur J Cell Biol 68:463–9

    PubMed  Google Scholar 

  • van Workum WAT, Van Brussel AAN, Tak T, Wijffelman CA, Kijne WJ (1995) Ethylene prevents nodulation of Vicia sativa ssp. nigra by exopolysaccharides deficient mutants of Rhizobium leguminosarum bv viciae. Mol Plant Microbe Interac 8:278–285

    Article  Google Scholar 

  • Vernie T, Moreau S, de Billy F, Plet J, Combier J-P, Rogers C, Vernie GO (2008) Factor involved in the control of nodule number and differentiation in Medicago truncatula. Plant Cell 20:2696–2713

    Article  PubMed  CAS  Google Scholar 

  • Xie ZP, Staehelin C, Wiemken A, Bolle T (1996) Ethylene responsiveness of soybean cultivars characterized by leaf senescence, chitinase induction and nodulation. J Plant Physiol 149: 690–694

    Article  CAS  Google Scholar 

  • Xiong K, Fuhrmann JJ (1996) Comparison of rhizobitoxine-induced inhibition of β-cystathionase from different bradyrhizobia and soybean genotypes. Plant Soil 186:53–61

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Choong-Min R (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  PubMed  CAS  Google Scholar 

  • Yoo SD, ChoY SJ, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14:270–279

    Article  PubMed  CAS  Google Scholar 

  • Yuhashi KI, Ichikawa N, Ezuura H, Akao S, Minakawa Y, Nukui N, Yasuta T, Minamisawa K (2000) Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl Environ Microbiol 66:2658–2663

    Article  PubMed  CAS  Google Scholar 

  • Zaat SA, Van Brussel AA, Tak T, Lugtenberg BJ, Kijne JW (1989) The ethylene inhibitor aminoethoxyvinylglycine restores normal nodulation by Rhizobium leguminosarum biovar Viciaeon Vicia sativa subsp. nigra by suppressing the thick and short roots phenotype. Planta 177:141–150

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arshad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Arshad, M., Khalid, A., Shahzad, S.M., Mahmood, T. (2010). Role of Ethylene and Bacterial ACC Deaminase in Nodulation of Legumes. In: Khan, M.S., Musarrat, J., Zaidi, A. (eds) Microbes for Legume Improvement. Springer, Vienna. https://doi.org/10.1007/978-3-211-99753-6_5

Download citation

Publish with us

Policies and ethics