Skip to main content

Recent Advances in Rhizobium–Legume Interactions: A Proteomic Approach

  • Chapter
Book cover Microbes for Legume Improvement

Abstract

Nitrogen-fixing symbioses between legumes and rhizobia over the years have played a major role in sustainable agricultural ecosystems. Owing to specific interactions with rhizobia, the leguminous plants form specialized nitrogen-fixing organ called as nodule, wherein rhizobia dwell and bring out the conversion of atmospheric nitrogen (N) to its usable form. This symbiosis in turn may abate the demand for external application of nitrogenous fertilizers while growing legumes under natural soil environment. Contemporary genomic research has provided a better understanding of the Rhizobium–legume interaction at molecular level. Several genomic approaches have been employed to define and demonstrate the involvement of rhizobial genomes in the symbiotic events. The genomes of two rhizobial species namely Mesorhizobium loti, the symbiont of several Lotus species, and Sinorhizobium meliloti, the symbiont of alfalfa, have now been completely sequenced, which have revealed interesting information about the genome evolution and structure, plant–microbes communication, and physiological diversity among the microsymbionts of legumes. While for legumes, numerous expressed sequence tags representing tens of thousands of different genes involved in root nodule formation and nitrogen fixation from three major legume species, Glycine max, Medicago truncatula, and Lotus japonicus have been deposited in the public domain. Currently, biological research is directed to understand gene expression and function involved in rhizobia–legume interaction. In this context, proteomics with continually evolving set of novel techniques to study all facets of protein structure and function is being considered as a promising and effective tool in the postgenomic era to explore further the intricacies of symbiotic process. It is likely that the proteomics approach may reveal the newer possibilities for better understanding the complex interactions of rhizobia and legumes, and also the mechanisms as to how rhizobia survive under stressed environment. The major breakthroughs from the contemporary proteome-level investigations into legume–rhizobia interactions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ampe F, Kiss E, Sabourdy F, Batut J (2003) Transcriptome analysis of Sinorhizobium meliloti during symbiosis. Genome Biol 4:R15

    Article  PubMed  Google Scholar 

  • Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19:1853–1861

    Article  PubMed  CAS  Google Scholar 

  • Arrese-Igor C, González EM, Gordon AJ, Minchin FR, Gálvez L, Royuela M, Cabrerizo PM, Aparicio-Tejo PM (1999) Sucrose synthase and nodule nitrogen fixation under drought and other environmental stresses. Symbiosis 27:189–21

    CAS  Google Scholar 

  • Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J et al (2001) Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci USA 98:9883–9888

    Article  PubMed  CAS  Google Scholar 

  • Barnett MJ, Toman CJ, Fisher RF, Long SR (2004) A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proc Natl Acad Sci USA 101:16636–16641

    Article  PubMed  CAS  Google Scholar 

  • Barsch A, Patschkowski T, Niehaus K (2004) Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography–mass spectrometry. Funct Integr Genomics 4:219–230

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Bèrges H, Krol E, Bruand C, Rüberg S, Capela D, Lauber E, Meilhoc E, Ampe F, de Bruijn FJ et al (2004) Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol Plant Microbe Interact 17:292–303

    Article  PubMed  CAS  Google Scholar 

  • Bentley SD, Parkhill J (2004) Comparative genomic structure of prokaryotes. Annu Rev Genet 38:771–792

    Article  PubMed  CAS  Google Scholar 

  • Bestel-Corre G, Dumas-Gaudot E, Gianinazzi S (2004) Proteomics as a tool to monitor plant–microbe endosymbioses in the rhizosphere. Mycorrhiza 14:1–10

    Article  PubMed  CAS  Google Scholar 

  • Bestel-Corre G, Dumas-Gaudot E, Poinsot V et al (2002) Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn. by two-dimensional electrophoresis and mass spectrometry. Electrophoresis 23:122–137

    Article  PubMed  CAS  Google Scholar 

  • Bhushan D, Aarti P, Mani KC, Asis D, Subhra C, Niranjan C (2007) Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol Cell Proteomics 6:1868–1884

    Article  PubMed  CAS  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Bray EA (2004) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55:2331–2341

    Article  PubMed  CAS  Google Scholar 

  • Brewin NJ (2004) Plant cell wall remodelling in the rhizobiumlegume symbiosis. Crit Rev Plant Sci 23:293–316

    Article  CAS  Google Scholar 

  • Brockwell J, Bottomley PJ, Thies JE (1995) Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil 174:143–80

    Article  CAS  Google Scholar 

  • Capela D, Barloy-Hubler F, Gouzy J, Bothe G, Ampe F, Batut J, Boistard P, Becker A, Boutry M, Cadieu E et al (2001) Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc Natl Acad Sci USA 98:9877–9882

    Article  PubMed  CAS  Google Scholar 

  • Catherine MB, Eric G, Xavier P, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466

    Article  CAS  Google Scholar 

  • Cermola M, Fedorova E, Tata R, Riccio A, Favre R, Patriarca EJ (2000) Nodule invasion and symbiosome differentiation during Rhizobium etliPhaseolus vulgaris symbiosis. Mol Plant Microbe Interact 13:733–741

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Isabelle D, Alain P, Pierre F (2009) Redox changes during the Legume–hizobium symbiosis. Mol Plant 2:370–377

    Article  PubMed  CAS  Google Scholar 

  • Chen HC, Higgins J, Kondorosi E et al (2000a) Identification of nolR-regulated proteins in Sinorhizobium meliloti using proteome analysis. Electrophoresis 21:3823–3832

    Article  PubMed  CAS  Google Scholar 

  • Chen HC, Higgins J, Oresnik IJ et al (2000b) Proteome analysis demonstrates complex replicon and luteolin interactions in pSyma-cured derivatives of Sinorhizobium meliloti strain 2011. Electrophoresis 21:3833–3842

    Article  PubMed  CAS  Google Scholar 

  • Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi MK (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39:487–512

    Article  PubMed  Google Scholar 

  • Cooper JE (2004) Multiple responses of rhizobia to flavonoids during legume root infection. Adv Bot Res 41:1–62

    Article  CAS  Google Scholar 

  • Cordwell SJ, Wilkins MR, Cerpapoljak A et al (1995) Crossspecies identification of proteins separated by two-dimensional gel electrophoresis using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and amino acid composition. Electrophoresis 16:438–443

    Article  PubMed  CAS  Google Scholar 

  • Cullimore JV, Raoul R, Jean-Jacques B (2001) Perception of lipo-chitooligosaccharidic Nod factors in legumes. Trends Plant Sci 6:24–30

    Article  PubMed  CAS  Google Scholar 

  • Dai WJ, Zeng Y, Xie ZP, Staehelin C (2008) Symbiosis-promoting and deleterious effects of NopT, a novel type 3 effector of Rhizobium sp. strain NGR234. J Bacteriol 190:5101–5110

    Article  PubMed  CAS  Google Scholar 

  • Diaz del Castillo L, Hunt S, Layzell DB (1994) The role of oxygen in the regulation of nitrogenase activity in drought-stressed soybean nodules. Plant Physiol 106:949–955

    CAS  Google Scholar 

  • Djordjevic MA (2004) Sinorhizobium meliloti metabolism in the root nodule: a proteomic perspective. Proteomics 4:1859–1872

    Article  PubMed  CAS  Google Scholar 

  • Djordjevic MA, Chen HC, Natera S, Van Noorden G, Menzel C, Taylor S, Renard C, Geiger O, Weiller GF (2003) The Sinorhizobium meliloti DNA sequencing consortium: a global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation. Mol Plant Microbe Interact 16:508–524

    Article  PubMed  CAS  Google Scholar 

  • Dubey H, Grover A (2001) Current initiatives in proteomics research: the plant perspective. Curr Sci 80:262–269

    CAS  Google Scholar 

  • Elías JM, Julieta PG, Althabegoiti MJ, Covelli J, Quelas JI, Silvina LLG, Lodeiro AR (2009) Overproduction of the rhizobial adhesin RapA1 increases competitiveness for nodulation. Soil Biol Biochem 41:2017–2020

    Article  CAS  Google Scholar 

  • Encarnación S, Guzmán Y, Dunn MF, Hernández M, del Carmen VM, Mora J (2003) Proteome analysis of aerobic and fermentative metabolism in Rhizobium etli CE3. Proteomics 3:1077–1085

    Article  PubMed  CAS  Google Scholar 

  • Endre G, Kereszt A, Kevei Z et al (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    Article  PubMed  CAS  Google Scholar 

  • Fauvart M, Michiels J (2008) Rhizobial secreted proteins as determinants of host specificity in the Rhizobium–legume symbiosis. FEMS Microbiol Lett 285:1–9

    Article  PubMed  CAS  Google Scholar 

  • Finan TM, McWhinnie E, Driscoll B, Watson RJ (1991) Complex symbiotic phenotypes result from gluconeogenic mutations in Rhizobium meliloti. Mol Plant Microbe Interact 4:386–392

    Article  CAS  Google Scholar 

  • Finan TM, Weider S, Wong K, Buhrmester J, Chain P, Vorhölter FJ, Hernández-Lucas I, Becker A, Cowie A, Gouzy J et al (2001) The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci USA 98:9889–9894

    Article  PubMed  CAS  Google Scholar 

  • Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev 58:352–386

    PubMed  CAS  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Franken P, Requena N (2001) Analysis of gene expression in arbuscular mycorrhizas: new approaches and challenges. New Phytol 150:517–523

    Article  CAS  Google Scholar 

  • Galibert F, Finan TM, Long SR et al (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    Article  PubMed  CAS  Google Scholar 

  • Gibson KE, Kobayashi H, Walker GC (2008) Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42:413–441

    Article  PubMed  CAS  Google Scholar 

  • Giel EVN, Tursun K, Nicolas G, Robert W, Flavia IP, Barry GR, Ulrike M (2007) Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. Plant Physiol 144:1115–1131

    Article  CAS  Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y et al (2007) A new paradigm for legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312

    Article  PubMed  Google Scholar 

  • González V, Santamaria RI, Bustos P, Hernández-González I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramírez MA, Jiménez-Jacinto V, Collado-Vides J et al (2006) The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA 103:3834–3839

    Article  PubMed  Google Scholar 

  • Gordon AJ, Minchin FR, Skøt L, James CL (1997) Stress-induced declines in soybean N-2 fixation are related to nodule sucrose synthase activity. Plant Physiol 114:937–946

    PubMed  CAS  Google Scholar 

  • Gray JX, Rolfe BG (1990) Exopolysaccharide production in Rhizobium and its role in invasion. Mol Microbiol 4:1425–1431

    Article  PubMed  CAS  Google Scholar 

  • Guerin V, Trichant JC, Rigaud J (1990) Nitrogen fixation (C2H2 reduction) by broad bean (Vicia faba L.) nodules and bacteroids under water-restricted conditions. Plant Physiol 91:595–601

    Article  Google Scholar 

  • Guerreiro N, Djordjevic MA, Rolfe BG (1999) Proteome analysis of the model microsymbiont Sinorhizobium meliloti: isolation and characterization of novel proteins. Electrophoresis 20:818–825

    Article  PubMed  CAS  Google Scholar 

  • Guerreiro N, Redmond JW, Rolfe BG, Djordjevic MA (1997) New Rhizobium leguminosarum flavonoid-induced proteins revealed by proteome analysis of differentially displayed proteins. Mol Plant Microbe Interact 10:506–516

    Article  PubMed  CAS  Google Scholar 

  • Guerreiro N, Stepkowski T, Rolfe BG, Djordjevic MA (1998) Determination of plasmid-encoded functions in Rhizobium leguminosarum biovar trifolii using proteome analysis of plasmid-cured derivatives. Electrophoresis 19:1972–1979

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  PubMed  CAS  Google Scholar 

  • Hempel J, Susanne Z, Michael G, Thomas P (2009) Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum. J Biotechnol 140:51–58

    Article  PubMed  CAS  Google Scholar 

  • Herder GD, Parniske M (2009) The unbearable naivety of legumes in symbiosis. Curr Opin Plant Biol 12:491–499

    Article  CAS  Google Scholar 

  • Hoa LT, Nomura M, Tajima S (2004) Characterization of bacteroid proteins in soybean nodules formed with Bradyrhizobium japonicum USDA110. Microbes Environ 19:71–75

    Article  Google Scholar 

  • Hoelzle I, Streeter JG (1990) Increased accumulation of trehalose in rhizobia cultured under 1% oxygen. Appl Environ Microbiol 56:3213–3215

    PubMed  CAS  Google Scholar 

  • Howieson JG (1999) The host-rhizobia relationship. In: Bennett SJ, Cocks PS (eds) Genetic resources of Mediterranean pasture and forage legumes. Kluwer Academic Publishers, Netherlands, pp 96–106

    Chapter  Google Scholar 

  • Javier DC, Milagros LB, Mariano H, Ricardo PG, del AA M (2007) Different Mesorhizobium species sharing the same symbiotic genes nodulate the shrub legume Anagyris latifolia. Syst Appl Microbiol 30:615–623

    Article  CAS  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nat Rev Microbiol 5:619–633

    Article  PubMed  CAS  Google Scholar 

  • Jones KM, Sharopova N, Lohar DP, Zhang JQ, VandenBosch KA, Walker GC (2008) Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc Natl Acad Sci USA 105:704–709

    Article  PubMed  CAS  Google Scholar 

  • Jungblut P, Wittmann-Liebold B (1995) Protein analysis on a genomic scale. J Biotechnol 41:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kambara K, Ardissone S, Kobayashi H, Saad MM, Schumpp O, Broughton WJ, Deakin WJ (2009) Rhizobia utilize pathogen-like effector proteins during symbiosis. Mol Microbiol 71:92–106

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K et al (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    Article  PubMed  Google Scholar 

  • Kav NNV, Srivastava S, Yajima W, Sharma N (2007) Application of proteomics to investigate plant–microbe interactions. Curr Proteomics 4:28–43

    Article  CAS  Google Scholar 

  • Kiers ET, Hutton MG, Denison RF (2007) Human selection and the relaxation of legume defences against ineffective rhizobia. Proc Biol Sci 274:3119–3126

    Article  PubMed  CAS  Google Scholar 

  • King CA, Purcell LC (2005) Inhibition of N2 fixation in soybean is associated with elevated ureides and amino acids. Plant Physiol 137:1389–1396

    Article  PubMed  CAS  Google Scholar 

  • Kinzig AP, Socolow RH (1994) Is nitrogen fertilizer use nearing a balance reply. Phys Today 47:24–35

    Article  Google Scholar 

  • Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutation in mammals. Humangenetik 26:231–43

    PubMed  CAS  Google Scholar 

  • Krause A, Broughton WJ (1992) Proteins associated with root-hair deformation and nodule initiation in Vigna unguiculata. Mol Plant Microbe Interact 5:96–103

    Article  CAS  Google Scholar 

  • Krusell L, Madsen LH, Sato S et al (2002) Shoot control of root development and nodulation is mediated by a receptor kinase. Nature 420:422–426

    Article  PubMed  CAS  Google Scholar 

  • LaBaer J, Ramachandran N (2005) Protein microarrays as tools for functional proteomics. Curr Opin Chem Biol 9:14–19

    Article  PubMed  CAS  Google Scholar 

  • Laranjo M, Ana A, Raúl R, Encarna V, Peter WY, Solange O (2008) Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiol Ecol 66:391–400

    Article  PubMed  CAS  Google Scholar 

  • Lodwig EM, Hosie AHF, Bourdès A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS (2003) Amino-acid cycling drives nitrogen fixation in the legume–Rhizobium symbiosis. Nature 422:722–726

    Article  PubMed  CAS  Google Scholar 

  • Long SR (1989) Rhizobium–legume nodulation: life together in the underground. Cell 56:203–214

    Article  PubMed  CAS  Google Scholar 

  • López-García SL, Perticari A, Piccinetti C, Ventimiglia L, Arias N, De Battista JJ, Althabegoiti MJ, Mongiardini EJ, Pérez-Giménez J, Quelas JI, Lodeiro AR (2009) In-furrow inoculation and selection for higher motility enhances the efficacy of Bradyrhizobium japonicum nodulation. Agron J 101:357–363

    Article  CAS  Google Scholar 

  • Lu YL, Chen WF, Wang ET, Guan SH, Yan XR, Chen WX (2009) Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst Appl Microbiol 32:351–361

    Article  PubMed  CAS  Google Scholar 

  • MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32(Suppl):526–532

    Article  PubMed  CAS  Google Scholar 

  • MacLean AM, Turlough MF, Michael JS (2007) Genomes of the symbiotic nitrogen-fixing bacteria of legumes. Plant Physiol 144:615–622

    Article  PubMed  CAS  Google Scholar 

  • Mandal SM, Mandal M, Pati BR, Das AK, Ghosh AK (2009) (2009) Proteomics view of a Rhizobium isolate response to arsenite [As(III)] stress. Acta Microbiol Immunol Hung 56:157–167

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U (2009) Comparative proteomic studies of root–microbe interactions. J Proteomics 72:353–366

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U, Keijzers G, Natera SHA et al (2001) Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1:1424–1440

    Article  PubMed  CAS  Google Scholar 

  • Mellor RB (1992) Is trehalose a symbiotic determinant in symbioses between higher plants and microorganisms? Symbiosis 12:113–129

    CAS  Google Scholar 

  • Morris AC, Djordjevic MA (2001) Proteome analysis of cultivar-specific interactions between Rhizobium leguminosarum biovar trifolii and subterranean clover cultivar Woogenellup. Electrophoresis 22:586–598

    Article  PubMed  CAS  Google Scholar 

  • Natera SHA, Guerreiro N, Djordjevic MA (2000) Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. Mol Plant Microbe Interact 13:995–1009

    Article  PubMed  CAS  Google Scholar 

  • Newton WE (2000) Nitrogen fixation in perspective. In: Pedrosa FO, Hungria M, Yates MG, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer, Dordrecht, The Netherlands, pp 3–8

    Google Scholar 

  • Nishimura R, Hayashi M, Wu G-J et al (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429

    Article  PubMed  CAS  Google Scholar 

  • Nystrom T (1998) To be or not to be: the ultimate decision of the growth-arrested bacterial cell. FEMS Microbiol Rev 21:283–290

    Article  CAS  Google Scholar 

  • Oehrle NW, Annamraju DS, James KW, David WE (2008) Proteomic analysis of soybean nodule cytosol. Phytochemistry 69:2426–2438

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd GED, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  PubMed  CAS  Google Scholar 

  • Ott T, van Dongen JT, Gunther C, Krusell L, Desbrosses G, Vigeolas H, Bock V, Czechowski T, Geigenberger P, Udvardi MK (2005) Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr Biol 15:531–535

    Article  PubMed  CAS  Google Scholar 

  • Panter S, Thomson R, de Bruxelles G et al (2000) Identification with proteomics of novel proteins associated with the peribacteroid membrane of soybean root nodules. Mol Plant Microbe Interact 13:325–333

    Article  PubMed  CAS  Google Scholar 

  • Park OK (2004) Proteomic studies in plants. J Biochem Mol Biol 37:133–138

    Article  PubMed  CAS  Google Scholar 

  • Pasquali C, Frutiger S, Wilkins MR, Hughes GJ, Appel RD, Bairoch A (1996) Two-dimensional gel electrophoresis of Escherichia coli homogenates: The Escherichia coli SWISS-2DPAGE database. Electrophoresis 17:547–555

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski K, Bisseling T (1996) Rhizobial and Actinorhizal symbioses: what are the shared features? Plant Cell 8:1899–1913

    PubMed  CAS  Google Scholar 

  • Pawlowski K, Ana R, Ton B (1996) Nitrogen fixing root nodule symbioses: legume nodules and actinorhizal nodules. Biotechnol Annu Rev 2:151–184

    Article  CAS  Google Scholar 

  • Pérez-Giménez J, Mongiardini EJ, Althabegoiti MJ, Covelli J, Quelas JI, López-García SL, Lodeiro AR (2009) Soybean lectin enhances biofilm formation by Bradyrhizobium japonicum in the absence of plants. Int J Microbiol. doi:10.1155/2009/719367

    PubMed  Google Scholar 

  • Prell J, Poole P (2006) Metabolic changes of rhizobia in legume nodules. Trends Microbiol 14:161–168

    Article  PubMed  CAS  Google Scholar 

  • Puranamaneewiwat N, Tajima S, Niamsup H (2006) Proteomic analysis of Bradyrhizobium japonicum USDA110 in acidic condition. Chiang Mai J Sci 33:335–345

    CAS  Google Scholar 

  • Redmond J, Batley W, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632–635

    Article  CAS  Google Scholar 

  • Reeve WG, Ravi PT, Nelson G, Janine S, Michael JD, Andrew RG, Barry GR, Michael AD, John GH (2004) Probing for pH-regulated proteins in Sinorhizobium medicae using proteomic analysis. Mol Microbiol Biotechnol 7:140–147

    Article  CAS  Google Scholar 

  • Robledo M, Jimenez-Zurdo JI, Velazquez E, Trujillo ME, Zurdo-Pineiro JL, Ramirez-Bahena MH, Ramos B, Diaz-Minguez JM, Dazzo F, Martinez-Molina E et al (2008) Rhizobium cellulase CelC2 is essential for primary symbiotic infection of legume host roots. Proc Natl Acad Sci USA 105:7064–7069

    Article  PubMed  CAS  Google Scholar 

  • Rolfe BG, Mathesius U, Djordjevic M, Weinman J, Hocart C, Weiller G, Bauer WD (2003) Proteomic analysis of legume microbe interactions. Comp Funct Genomics 4:225–228

    Article  PubMed  CAS  Google Scholar 

  • Roth E, Jeon K, Stacey G (1988) Homology in endosymbiotic systems: the term “symbiosome”. In: Palacios R, Verma DPS (eds) Molecular genetics of plant microbe interactions. ADS Press, St. Paul, pp 220–225

    Google Scholar 

  • Sánchez F, Padilla JE, Pérez H, Lara M (1991) Control of nodulin genes in rootnodule development and metabolism. Annu Rev Plant Physiol Plant Mol Biol 42:507–528

    Article  Google Scholar 

  • Sarma AD, Emerich DW (2006) A comparative proteomic evaluation of culture grown vs nodule isolated Bradyrhizobium japonicum. Proteomics 6:3008–3028

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Nakamura Y, Asamizu E, Isobe S, Tabata S (2007) Genome sequencing and genome resources in model legumes. Plant Physiol 144:588–593

    Article  PubMed  CAS  Google Scholar 

  • Searle IR, Men AE, Laniya T et al (2002) Long-distance signalling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299:109–112

    Article  PubMed  CAS  Google Scholar 

  • Serraj R, Vadez V, Sinclair TR (2001) Feedback regulation of symbiotic N2 fixation under drought stress. Agronomie 21:621–626

    Article  Google Scholar 

  • Shamseldin A, Julius N, Dietrich W (2006) A proteomic approach towards the analysis of salt tolerance in Rhizobium etli and Sinorhizobium meliloti strains. Curr Microbiol 52:333–339

    Article  PubMed  CAS  Google Scholar 

  • Shimoda Y, Sayaka S, Mitsuyo K, Yasukazu N, Satoshi T, Shusei S (2008) A large scale analysis of Protein–Protein interactions in the nitrogen-fixing bacterium Mesorhizobium loti. DNA Res 15:13–23

    Article  PubMed  CAS  Google Scholar 

  • Silvia P, Javier R, David R, Miguel AC, Alfredo M, Francisco B, Guillermo G (2007) Tyrosinase from Rhizobium etli is involved in nodulation efficiency and symbiosis-associated stress resistance. Mol Microbiol Biotechnol 13:35–44

    Article  CAS  Google Scholar 

  • Siria HA, Natera NG, Djordjevic MA (2000) Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. Mol Plant Microbe Interact 13(9):995–1009

    Article  Google Scholar 

  • Skorupska A, Janczarek M, Marczak M, Mazur A, Król J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 5:7

    Article  PubMed  CAS  Google Scholar 

  • Spaink HP (1996) Regulation of plant morphogenesis by lipochin oligosaccharides. Crit Rev Plant Sci 15:559–582

    CAS  Google Scholar 

  • Stracke S, Kistner C, Yoshida S et al (2002) A plant receptor like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  PubMed  CAS  Google Scholar 

  • Streeter JG (1980) Carbohydrates in soybean nodules II. Distribution of compounds in seedlings during the onset of nitrogen fixation. Plant Physiol 66:471–476

    Article  PubMed  CAS  Google Scholar 

  • Thurston G, Regan S, Rampitsch C, Xing T (2005) Proteomic and phosphoproteomic approaches to understand plant-pathogen interactions. Physiol Mol Plant Pathol 66:3–11

    Article  CAS  Google Scholar 

  • van Noorden GE, Kerim T, Goffard N, Wiblin R, Pellerone FI, Rolfe BG et al (2007) Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. Plant Physiol 144:1115–1131

    Article  PubMed  CAS  Google Scholar 

  • van Rhijn P, Vanderleyden J (1995) The Rhizobium-plant symbiosis. Microbiol Rev 59:124–142

    PubMed  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  PubMed  CAS  Google Scholar 

  • Vernie T, Moreau S, de Billy F, Plet J, Combier J-P, Rogers C, Oldroyd G, Frugier F, Niebel A, Gamas P (2008) EFD Is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. Plant Cell 20:2696–2713

    Article  PubMed  CAS  Google Scholar 

  • Vij N (2003) Proteomics: a novel approach to explore signal exchanges in Rhizobium–legume symbiosis. Indian J Exp Biol 41:1133–1135

    PubMed  CAS  Google Scholar 

  • Wan J, Torres M, Ganapathy A, Thelen J, Dague BB, Mooney B, Dong X, Stacey G (2005) Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum. Mol Plant Microbe Interact 18:458–467

    Article  PubMed  CAS  Google Scholar 

  • Wei G, Weimin C, Peter J, Young W, Cyril B (2009) A new clade of Mesorhizobium nodulating Alhagi sparsifolia. Syst Appl Microbiol 32:8–16

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Wilkins MR, Pasquali C, Appel RD, Ou K, Olaz O (1996) From proteins to proteomes: large scale protein identification by two dimensional electrophoresis and amino acid analysis. Biotechnology 14:61–65

    Article  PubMed  CAS  Google Scholar 

  • Wilkins MR (2009) Proteomics data mining. Expert Rev Proteomics 6:599–603

    Article  PubMed  Google Scholar 

  • Winzer T, Bairl A, Linder M, Linder D, Werner D, Müller P (1999) A novel 53-kDa nodulin of the symbiosome membrane of soybean nodules, controlled by bradyrhizobium japonicum. Mol Plant Microbe Interact 12:218–226

    Article  PubMed  CAS  Google Scholar 

  • Yarmush ML, Jayaraman A (2002) Advances in proteomic technologies. Annu Rev Biomed Eng 4:349–373

    Article  PubMed  CAS  Google Scholar 

  • Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS et al (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34

    Article  PubMed  CAS  Google Scholar 

  • Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Roe BA, Tabata S (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137:1174–1181

    Article  PubMed  CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium–legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed  CAS  Google Scholar 

  • Zaidi A, Khan MS (2007) Stimulatory effects of dual inoculation with phosphate solubilizing microorganisms and arbuscular mycorrhizal fungus on chickpea. Aust J Exp Agric 47:1016–1022

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Article  Google Scholar 

  • Zhang K, McKinlay C, Hocart CH, Djordjevic MA (2006) The Medicago truncatula small protein proteome and peptidome. J Proteome Res 5:3355–3367

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Musarrat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Musarrat, J., Zaidi, A., Khan, M.S. (2010). Recent Advances in Rhizobium–Legume Interactions: A Proteomic Approach. In: Khan, M.S., Musarrat, J., Zaidi, A. (eds) Microbes for Legume Improvement. Springer, Vienna. https://doi.org/10.1007/978-3-211-99753-6_4

Download citation

Publish with us

Policies and ethics