Skip to main content

Role of Metal Tolerant Microbes in Legume Improvement

  • Chapter
Microbes for Legume Improvement

Abstract

Soils contaminated with heavy metals present a major threat to nodule-forming rhizobia, legumes, and symbiosis formed by the interacting symbionts. The symbiotic relation, as it occurs generally in economically important legumes, has deep impact on human interest. However, in legume–Rhizobium symbiosis, maximum yield is possible only when there is suitable condition for both symbiotic partners. Thus, understanding the effects of heavy metals on rhizobia–legume symbiosis will be useful. Although mechanical and chemical processes have been used to clean up metal-contaminated soils, most traditional remediation technologies do not provide acceptable solutions for the removal of metal from soils. The use of metal tolerant/detoxifying microbes offers a viable and inexpensive alternative technology to clean up polluted soils. Metal-tolerant microbes not only help to remediate the contaminated soils, but also provide elements essential to the growing legumes. Given the importance of legumes in animal and human consumption and their role in maintaining soil fertility, attention is paid to understand how rhizobia develops resistance to various heavy metals. Possible role of symbiotic nitrogen fixers in the metal-contaminated soils and how these microbes influence the productivity of various legumes in metal-contaminated soils across different geographical regions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Shanab RA, Ghanem K, Ghanem N, Al-Kolaibe A (2008) The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World J Microbiol Biotechnol 24:253–262

    Article  CAS  Google Scholar 

  • Abou-Shanab RA, Ghozlan H, Ghanem K, Moawad H (2005) Behaviour of bacterial populations isolated from rhizosphere of Diplachne fusca dominant in industrial sites. World J Microbiol Biotechnol 21:1095–1101

    Article  CAS  Google Scholar 

  • Ahemad A, Khan MS (2009) Effect of insecticide-tolerant and plant growth-promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J Crop Sci Biotech 12:213–222

    Article  Google Scholar 

  • Akerblom S, Baath E, Bringmark L, Bringmark E (2007) Experimentally induced effects of heavy metal on microbial activity and community structure of forest more layers. Biol Fertil Soils 44:79–91

    Article  CAS  Google Scholar 

  • Alexander E, Pham D, Steck TR (1999) The viable but non-culturable condition is induced by copper on Tumefaciens and Rhizobium leguminosarum. Appl Env Microbiol 65:3754–3756

    CAS  Google Scholar 

  • Alikhani HA, Saleh-rastin N, Antoun H (2006) Phosphate solubilization activity of rhizobia native to Iranian soils. Plant Soil 287:35–41

    Article  CAS  Google Scholar 

  • Arfaoui AB, Sifi B, Boudabous A, Hadrami IE, Chérif M (2006) Identification of Rhizobium isolates possessing antagonistic activity against Fusarium oxysporum sp. ciceris, the causal agent of Fusarium wilt of chickpea. J Plant Pathol 88:67–75

    CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. Boca Raton, CRC Press, pp 77–104

    Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect on cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Func Plant Biol 30:57–64

    Article  CAS  Google Scholar 

  • Balestrasse KB, Gallego AM, Tomaro ML (2004) Cadmium-induced senescence in nodules of soybean (Glycine max L.) plants. Plant and Soil 262:373–381

    Article  CAS  Google Scholar 

  • Bamborough L, Cummings SP (2008) The impact of increasing heavy metal stress on the diversity and structure of the bacterial and actinobacterial communities of metallophytic grassland soil. Biol Fertil Soils 45:273–280

    Article  CAS  Google Scholar 

  • Bardin SD, Huang HC, Pinto J, Amundsen EJ, Erickson RS (2004) Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. Viceae. Can J Bot 82:291–296

    Article  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    Article  CAS  Google Scholar 

  • Belimov AA, Safroonova VI, Mimura T (2002) Response of spring rape to inoculation with plant growth promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Can J Microbiol 48:189–199

    Article  PubMed  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Bibi M, Hussain M (2005) Effect of copper and lead on photosynthesis and plant pigments in black gram (Vigna mungo L.). Bull Environ Contam Toxicol 74:1126–1133

    Article  PubMed  CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by three strains of Bradyrizobium japonicum and possible physiological and technological implications. J Appl Mcrobiol Biotechnol 74:874–80

    Article  CAS  Google Scholar 

  • Bose S, Bhattacharyya AK (2008) Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere 70:1264–1272

    Article  PubMed  CAS  Google Scholar 

  • Breen AP, Murphy JA (1995) Reaction of oxyl radicals with DNA. Free Rad Biol Med 18:1033–1077

    Article  PubMed  CAS  Google Scholar 

  • Broos K, Beyens H, Smolders E (2005) Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant. Soil Biol Biochem 37:573–579

    Article  CAS  Google Scholar 

  • Broos K, Uyttebroek M, Mertens J, Smolders E (2004) A survey of symbiotic nitrogen fixation by white clover grown on metal contaminated soils. Soil Biol Biochem 36:633–640

    Article  CAS  Google Scholar 

  • Brookes PC, Mc Grath SP (1984) Effect of metal toxicity on the size of the soil microbial biomass. Eur J Soil Sci 10:1365–2389

    Google Scholar 

  • Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, López R, Chamber MA, Palomares AJ (2005) Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcóllar pyrite mine. Soil Biol Biochem 37:1131–1140

    Article  CAS  Google Scholar 

  • Castro IVE, Sa-Pereira P, Simoes F, Matos JA, Ruiz O, Ferreira E (2008) Lotus/Rhizobium symbiosis in contaminated soils. Importance and use for bioremediation. Lotus Newslett 38:44–45

    Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Brazilian J Microbiol 38:124–130

    Article  Google Scholar 

  • Chaudri AM, Allain CM, Barbosa-Jefferson VL, Nicholson FA, Chambers BJ, McGrath SP (2000) A study of the impacts of Zn and Cu on two rhizobial species in soils of a long term field experiment. Plant Soils 22:167–179

    Article  Google Scholar 

  • Chaudri AM, McGrath SP, Giller KE, Rietz E, Sauerbeck DR (1993) Enumeration of indigenous Rhizobium leguminosarum biovar trifolii in soils previously treated with metal-contaminated sewage sludge. Soil Biol Biochem 25:301–309

    Article  CAS  Google Scholar 

  • Chen Z-F, Ye Z, Yuen Z, Yang Xu, Jiejuan Q, Qing T, Zhang Q (2010) Health risks of heavy metals in sewage-irrigated soils and edible seeds in Langfang of Hebei province, China. J Sci Food Agric 90:314–320

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Li GS, Qi YL, Wang ET, Yuan HL, Li L (1991) Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol 41:275–280

    Article  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and theirs roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  PubMed  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Duan J, Muller KM, Charles TC, Vesely S, Glick BR (2009) 1-aminocyclopropane-1-carboxylate (ACC) deaminase genes in rhizobia from southern Saskatchewan. Microb Ecol 57:421–422

    Article  Google Scholar 

  • El-Aziz R, Angle JS, Chaney RL (1991) Metal tolerance of Rhizobium meliloti isolated from heavymetal contaminated soils. Soil Biol Biochem 23:795–798

    Article  CAS  Google Scholar 

  • Erum S, Bano A (2008) Variation in phytohormone production in Rhizobium strains at different altitudes of northern areas of Pakistan. Int J Agri Biol 10:536–40

    CAS  Google Scholar 

  • Etesami H, Alikhani HA, Rastin NS (2008) The effect of superior IAA producing rhizobia and their combination with Ag and Trp on wheat growth indices. World Appl Sci J 5(3):272–275

    Google Scholar 

  • Frostegård A, Tunlid A, Bååth E (1996) Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol Biochem 28:55–63

    Article  Google Scholar 

  • Giller KE, McGrath SP, Hirsch PR (1989) Absence of nitrogen fixation in clover grown on soil subject to long-term contamination with heavy metals is due to survival of only ineffective Rhizobium. Soil Biol Biochem 21:841–848

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial process in agriculture soils – a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Hajiboland R (2005) An evaluation of the efficiency of cultural plants to remove heavy metals from growing medium. Plant Soil Environ 51:156–164

    CAS  Google Scholar 

  • Hirsch PR, Jones MJ, McGrath SP, Giller KE (1993) Heavy-metals from past applications of sewage sludge decrease the genetic diversity of Rhizobium leguminosarum biovar trifolii populations. Soil Biol Biochem 25:1485–1490

    Article  Google Scholar 

  • Hong SH, Gohya M, Ono H, Murakami H, Yamashita M, Hirayama N, Murooka Y (2000) Molecular design of novel metalbinding oligomeric human metallothioneins. Appl Microbiol Biotechnol 54:84–89

    Article  PubMed  CAS  Google Scholar 

  • Ike A, Sriprang R, Ono H, Mitsuo YM (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:1670–1676

    Article  PubMed  CAS  Google Scholar 

  • Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.). Int J Plant Production 2:141–142

    Google Scholar 

  • Jung MC (2008) Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu-W mine. Sensors 8:2413–2423

    Article  Google Scholar 

  • Karpiscak MM, Whiteaker LR, Artiola JF, Foster KE (2001) Nutrient and heavy metal uptake and storage in constructed wetland systems in Arizona. Water Sci Technol 44:455–462

    PubMed  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Aamil M (2002) Biocontrol of fungal pathogens by the use of plant growth promoting rhizobacteria and nitrogen fixing microorganisms. J Ind Bot Soc 81:255–263

    Google Scholar 

  • Kinkle BK, Angle JS, Keyser HH (1987) Longterm effects of metal-rich sewage sludge application on soil populations of Bradyrhizobium japonicum. Appl Env Microbiol 53:315–319

    CAS  Google Scholar 

  • Kinkle BK, Sadowsky MJ, Johnstone K, Koskinen WC (1994) Tellurium and selenium resistance in rhizobia and its potential use for direct isolation of Rhizobium meliloti from soil. Appl Environ Microbiol 60:1674–1677

    PubMed  CAS  Google Scholar 

  • Krishnamurthy GSR (2000) Speciation of heavy metals: an approach for remediation of contaminated soils. Remediation Engineering of Contaminated Soils. In: Wise DL, Trantalo DJ, Cichon EJ, Inyang HI, Stottmeister U (eds) Marcel Decker Inc, New York, p 709

    Google Scholar 

  • Krishnan HB, Kang BR, Krishnan AH, Kil Kim KY, Kim YC (2007) Rhizobium etli USDA9032 engineered to produce a phenazine antibiotic inhibits the growth of fungal pathogens but is impaired in symbiotic performance. Appl Environ Microbiol 73:327–330

    Article  PubMed  CAS  Google Scholar 

  • Kumar KV, Shubhi S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170:51–57

    Article  PubMed  CAS  Google Scholar 

  • Lima AIG, Pereira SAI, Figueira EMAP, Caldeira GCN, Caldeira HDQM (2006) Cadmium detoxification in roots of Pisum sativum seedlings: relationship between toxicity levels, thiol pool alterations and growth. Environ Exp Bot 55:149–62

    Article  CAS  Google Scholar 

  • Liao M, Luo YK, Zhao X, Huang CY (2005) Toxicity of cadmium to soil microbial biomass and its activity: effect of incubation time on Cd ecological dose in a paddy soil. J Zhejiang Univ Sci B 6:324–330

    PubMed  Google Scholar 

  • Liu WX, Liu JW, Wu MZ, Li Y, Zhao Y, Li SR (2009) Accumulation and translocation of toxic heavy metals in winter wheat ( Triticum aestivum L.) growing in agricultural soil of Zhengzhou. China Bull Environ Contam Toxicol 82:343–347

    Article  CAS  Google Scholar 

  • Lopareva A, Goncharova N (2007) Plant–microbe symbiosis for bioremediation of heavy metal contaminated soil: perspectives for Belarus. In: Hull RN et al (eds) Strategies to enhance environmental security in transition countries. Springer, Netherlands, pp 401–414

    Chapter  Google Scholar 

  • Ma W, Sebestianova SB, Sebestian J, Burd GI, Guinel FC, Glick BR (2003) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. Anton Leeuwenhoek 83:285–291

    Article  CAS  Google Scholar 

  • Mamaril JC, Paner ET, Alpante BM (1997) Biosorption and desorption studies of chromium (III) by free and immobilized Rhizobium (BJVr12) cell biomass. Biodegradation 8:275–285

    Article  CAS  Google Scholar 

  • Manier N, Deram A, Broos K, Denayer FO, Haluwyn CV (2009) White clover nodulation index in heavy metal contaminated soils – a potential bioindicator. J Environ Qual 38:685–692

    Article  PubMed  CAS  Google Scholar 

  • Margesin R, Schinner F (2007) Bacterial heavy metal-tolerance – extreme resistance to nickel in Arthrobacter spp. Strains. J Basic Microbiol 36:269–282

    Article  Google Scholar 

  • McCarthy I, Romero-Puertas MC, Palma JM, Sandalio LM, Corpas FJ, Gomez M, Del Rio LA (2001) Cadmium induces senescence systems in leaf peroxisomes of pea plants. Plant Cell Environ 24:1065–1073

    Article  CAS  Google Scholar 

  • McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB Int, Wallingford, UK, pp 261–287

    Google Scholar 

  • Mengoni A, Schat H, Vangronsveld J (2009) Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant Soil. doi:10.1007/s11104-009-0242-4

    Google Scholar 

  • Mumtaz H, Sajid M, Ahmad A (2006) AND ABIDA KAUSAR (2006) Effect of lead and chromium on growth, Photosynthetic Pigments And Yield Components In Mash Bean [Vigna Mungo (L.) Hepper]. Pak J Bot 38:1389–1396

    Google Scholar 

  • Murooka Y, Goya M, Hong SH, Hayashi M, Ono H, Tachimoto M, Hirayama N (2000) A new remediation system for heavy metals using leguminous plant and rhizobia symbiosis. In: Pedrosa FO, Hungria M, Yates G, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Current plant science and biotechnology in agriculture. Kluwer Academic Publishers, Netherlands, p 581

    Google Scholar 

  • Murooka Y, Xu Y, Sanada H, Araki M, Morinaga T, Yokata A (1993) Formation of root nodules by Rhizobium huakuii biobar. rengei bv. ov. on Astragalus sinicus cv. Japan. J Ferment Bioeng 76:39–44

    Article  Google Scholar 

  • Nele W, van der Daniel L, Safiyh T, Lee N, Jaco V (2009) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  Google Scholar 

  • Nicolas M, Annabelle D, Kris B, Franck-Olivier D, Van Chantal H (2009) White clover nodulation index in heavy metal contaminated soils – a potential bioindicator. J Environ Qual 38:685–692

    Article  CAS  Google Scholar 

  • Nie L, Shah S, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361

    Article  CAS  Google Scholar 

  • Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2007) Cadmium induced oxidative stress in soybean plants also by the accumulation of δ-aminolevulinic acid. Biometals 20:841–851

    Article  PubMed  CAS  Google Scholar 

  • Nuswantara S, Fujie M, Yamada T, Malek W, Inaba M, Kaneko Y, Murooka Y (1999) Phylogenic position of Mesorhizobium huakuii subsp. rengei, a symbiont of Astragalus sinicus cv. Japan J Biosci Bioeng 87:49–55

    Article  CAS  Google Scholar 

  • Obbard JP, Jones KC (2001) Measurement of symbiotic nitrogen-fixation in leguminous host-plants grown in heavy metal-contaminated soils amended with sewage sludge. Environ Pollut 111:311–320

    Article  PubMed  CAS  Google Scholar 

  • Pajuelo E, Dary M, Palomares AJ, Rodriguez-Llorente ID, Carrasco JA, Chamber MA (2008) Biorhizoremediation of heavy metals toxicity using Rhizobium–legume symbioses. In: Dakora FD, Chimphango SBM, Valentine AJ, Elmerich C, Newton WE (eds) Biological nitrogen fixation: towards poverty alleviation through sustainable agriculture. Springer, Netherlands, pp 101–104

    Chapter  Google Scholar 

  • Paudyal SP, Aryal RR, Chauhan SVS, Maheshwari DK (2007) Effect of heavy metals on growth of Rhizobium strains and symbiotic efficiency of two species of tropical legumes. Scientific World 5:27–32

    Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth promoting bacteria. Can J Microbiol 47:368–372

    Article  PubMed  CAS  Google Scholar 

  • Peralta-Videa JR, Gardea-Torresdey JL, Gomez E, Tiemann KJ, Parsons JG, Carrillo G (2002a) Effect of mixed cadmium copper, nickel, and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environ Pollut 119:291–301

    Article  PubMed  CAS  Google Scholar 

  • Peralta-Videa JR, Gardea-Torresdey JL, Gomez E, Tiemann KJ, Parsons JG, de la Rosa G, Carrillo G (2002b) Potential of alfalfa plant to phytoremediate individually contaminated montmorillonite-soils with cadmium (ii), chromium(vi), copper (ii), nickel(ii), and zinc(ii). B Environ Contam Toxicol 69:74–81

    Article  CAS  Google Scholar 

  • Peralta-Videa JR, de la Rosa G, Gonzalez JH, Gardea-Torresdey JL (2004) Effects of the growth stage on the heavy metal tolerance of alfalfa plants. Adv Environ Res 8:679–685

    Article  CAS  Google Scholar 

  • Peralta-Videa JR, Gardea-Torresdey JL, Gomez E, Tiemann KJ, Parsons LG, Carrillo G (2006) Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Scientific World 4:4

    Google Scholar 

  • Pereira SIA, Lima AIG, Figueira EMAP (2006a) Screening possible mechanisms mediating cadmium resistance in Rhizobium leguminosarum bv. viciae isolated from contaminated Portuguese soils. Microb Ecol 52:176–186

    Article  PubMed  CAS  Google Scholar 

  • Pereira SIA, Lima AIG, Figueira EMAP (2006b) Heavy metal toxicity in Rhizobium leguminosarum biovar viciae isolated from soils subjected to different sources of heavy metal contamination: effect on protein expression. Appl Soil Ecol 33:286–293

    Article  Google Scholar 

  • Perret X, Freiberg C, Rosenthal A, Broughton WJ, Fellay R (1999) High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol Microbiol 32:415–425

    Article  PubMed  CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008) Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Biores Technol 99:3491–3498

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Helena F (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109:1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Raychaudhuri N, Das SK, Chakrabartty PK (2005) Symbiotic effectiveness of a siderophore overproducing mutant of Mesorhizobium ciceri. Pol J Microbiol 54:37–41

    PubMed  Google Scholar 

  • Reichman SM (2007) The potential use of the legume–Rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biol Biochem 39:2587–2593

    Article  CAS  Google Scholar 

  • Ruvkun GB, Sundaresan V, Ausubel FM (1982) Directed transposon Tn5 mutagenesis and complementation analysis of Rhizobium meliloti symbiotic nitrogen fixation genes. Cell 29:551–559

    Article  PubMed  CAS  Google Scholar 

  • Sa-Pereira P, Rodrigues M, Castro IV, Simoes F (2007) Identification of an arsenic resistance mechanism in strains of Rhizobium. World J Microbiol Biotechnol 23:1351–1356

    Article  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean. Lett Appl Microbiol 42:155–159

    Article  PubMed  CAS  Google Scholar 

  • Sharma RK, Agrawal M (2005) Biological effects of heavy metals: an overview. J Environ Biol 26(2 Suppl):301–313

    PubMed  CAS  Google Scholar 

  • Sheoran IS, Signal HR, Singh R (1990) Effect of Cd and Ni on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajans cajan L.). Photosyn Res 23:345–351

    Article  CAS  Google Scholar 

  • Smith SR, Giller KE (1992) Effective Rhizobium leguminosarum biovar trtfolii present in five soils contaminated with heavy metals from long-term applications of sewage sludge or metal mine spoil. Soil Biol Biochem 24:781–788

    Article  CAS  Google Scholar 

  • Sobolev D, Begonia M (2008) Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int J Environ Res Public Health 5:450–456

    Article  PubMed  CAS  Google Scholar 

  • Sridevi M, Kumar KG, Mallaiah KV (2008) Production of catechol-type of siderophores by Rhizobium sp. isolated from stem nodules of Sesbania procumbens (Roxb.) W and A. Res J Microbiol 3:282–287

    Article  Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by Mesorhizobium transformed with a gene for phytochelatin synthase from Arabidopsis. Appl Env Microbiol 69:1791–1796

    Article  Google Scholar 

  • Sriprang R, Hayashi M, Yamashita M, Ono H, Saeki K, Murooka Y (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 99:279–293

    Article  PubMed  CAS  Google Scholar 

  • Storey EP, Boghozian R, Little JL, Lowman DW, Chakraborty R (2006) Characterization of ‘Schizokinen’; a dihydroxamate-type siderophore produced by Rhizobium leguminosarum LARI 917. BioMetals 19:637–649

    Article  PubMed  CAS  Google Scholar 

  • Terry N (1981) An analysis of the growth responses of Beta vulgaris L. to phytotoxic trace elements. II. Chromium. Final report to the Kearney foundation of soil science. July 1975–June 1980, 1981

    Google Scholar 

  • Tittabutr P, Awaya JD, Li QX, Borthakur D (2008) The cloned 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene from Sinorhizobium sp. strain BL3 in Rhizobium sp. strain TAL1145 promotes nodulation and growth of Leucaena leucocephala. Syst App Microbiol 31:141–150

    Article  CAS  Google Scholar 

  • Uchiumi T, Oowada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima T, Saeki K, Oomori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda S, Sioya K, Abe M, Minamisawa K (2004) Expression islands clustered on symbiosis island of mesorhizobium loti genome. J Bacteriol 186:2439–2448

    Article  PubMed  CAS  Google Scholar 

  • Vidal C, Chantreuil C, Berge O, Mauré L, Escarré J, Béna G, Brunel B, Cleyet-Marel JC (2009) Mesorhizobium metallidurans sp nov, a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. Int J Syst Evol Microbiol 59:850–855

    Article  PubMed  CAS  Google Scholar 

  • Wang HB, Wong MH, Lan CY, Baker AJM, Qin YR, Shu WS, Chen GZ, Ye ZH (2007) Uptake and accumulation of arsenic by 11 Pteris taxa from southern China. Environ Pollut 145:225–233

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Zaidi A, Khan MS (2009) Chromium reducing and plant growth promoting potential of Mesorhizobium species under chromium stress. Bioremediation J 13:121–129

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008a) Effects of heavy metal toxicity on growth, Symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 81:152–158

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008b) Chromium reducing and plant growth promoting Mesorhizobium improves chickpea growth in chromium amended soil. Biotechnol Lett 30:159–163

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2006) An evaluation of the effects of heavy metals on the growth, seed yield and grain protein of lentil in pots. Ann Appl Biol 27(TAC Supplement):23–24

    CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea. Aus J Expt Agric 47:712–720

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Cadmium, chromium and copper in greengram plants. Agron Sustain Dev 27:145–153

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007c) Effect of metal tolerant plant growth promoting rhizobium on the performance of pea grown in metal amended soil. Arch Environ Contam Toxicol 55:33–42

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007d) Impact of zinc tolerant plant growth promoting rhizobacteria on lentil grown in zinc amended soil. Agron Sustain Dev. doi:10.1051/1agro:2007048

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007e) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007f) Synergistic effects of the inoculation with nitrogen fixing and phosphate solubilizing rhizobacteria on the performance of field grown chickpea. J Plant Nutr Soil Sci 170:283–287

    Article  CAS  Google Scholar 

  • Wood M, Cooper JE (1988) Acidity, aluminium and multiplication of Rhizobium trifolii: possible mechanisms of aluminium toxicity. Soil Biol Biochem 20:95–99

    Article  CAS  Google Scholar 

  • Xu WH, Liu H, Ma QF, Xiong ZT (2007) Root exudates, rhizosphere Zn fractions, and Zn accumulation of ryegrass at different soil Zn levels. Pedosphere 17:389–396

    Article  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1986) Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol 35:155–189

    Article  Google Scholar 

  • Younis M (2007) Response of Lablab perpureusRhizobium symbiosis to heavy metals in pot and field experiments. World J Agric Sci 3:111–122

    Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Article  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    Article  PubMed  CAS  Google Scholar 

  • Zhuang X, Chen J, Shin H, Bai Z (2007) New advances in plant growth promoting rhizobacteria for bioremediation. Environ Intern 33:406–413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Oves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Oves, M., Zaidi, A., Khan, M.S. (2010). Role of Metal Tolerant Microbes in Legume Improvement. In: Khan, M.S., Musarrat, J., Zaidi, A. (eds) Microbes for Legume Improvement. Springer, Vienna. https://doi.org/10.1007/978-3-211-99753-6_14

Download citation

Publish with us

Policies and ethics