Skip to main content

Legume Responses to Arbuscular Mycorrhizal Fungi Inoculation in Sustainable Agriculture

  • Chapter
Microbes for Legume Improvement

Abstract

Currently, the sustainability of ecosystems is in danger due to both application of varied degrading agents and intensive exploitation of tropical forests. During the last decades, inventories of the soil’s productive capacity indicate severe degradation and loss of arable lands. The situation is highly exacerbated in economically disadvantaged countries. The ever increasing human populations prompt extensive usage of agrochemicals to attain optimum yields. The use of such chemicals leads to losses in soil fertility, and hence, requires an alternative to boost crop productivity while sustaining ecological quality. Globally, there is widespread interest in the use of legumes due to their multifaceted functions. It is a well established fact that legumes are essential components in natural and managed terrestrial ecosystems. The arbuscular mycorrhizal fungi (AMF) are universal and ubiquitous rhizosphere microflora forging symbiosis with plethora of plant species and acting as biofertilizers, bioprotectants, and biodegraders. The arbuscular mycorrhizal-legume symbiosis is suggested to be the ideal solution to the improvement of soil fertility and the rehabilitation of arid lands. The voluminous literature has revealed that AMF improve the overall growth of leguminous plants growing under diverse agroecological zones. Furthermore, the tripartite symbiosis between legume–mycorrhizal–rhizobium has shown superior improvements in legumes. In this chapter, attention is paid to association of AMF with leguminous plants and effect of composite inoculation of legume plants with mycorrhizal fungi and rhizobia under different growth conditions. Furthermore, mycorrhizal dependency of legumes, effects of arbuscular mycorrhizal fungi on productivity of legumes with special emphasis on alleviation of environmental stresses, and rehabilitation of desertified and/or degraded habitats is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad MH (1995) Compatibility and co-selection of vesicular-arbuscular mycorrhizal fungi and rhizobia for tropical legumes. Crit Rev Biotechnol 15:229–239

    Article  Google Scholar 

  • Al-Garni SMS (2006) Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. Afr J Biotechnol 5:133–142

    CAS  Google Scholar 

  • Aliasgharzad N, Neyshabouri MR, Salimi G (2006) Effects of arbuscular mycorrhizal fungi and Bradyrhizobium japonicum on drought stress of soybean. Biologia, Bratislava 61/Suppl. 19:S324–S328

    Article  Google Scholar 

  • Andrade SAL, Abreu CA, de Abreu MF, Silveira APD (2004) Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Appl Soil Ecol 26:123–131

    Article  Google Scholar 

  • Aroca R, Ruiz-Lozano JM (2009) Induction of plant tolerance to semi-arid environments by beneficial soil microorganisms – a review. In: Lichtfouse E (ed) Climate change, intercropping, pest control and beneficial microorganisms, sustainable agriculture reviews 2. Springer Science+Business Media BV, Dordrecht, pp 121–135

    Chapter  Google Scholar 

  • Aysan E, Demir S (2009) Using arbuscular mycorrhizal fungi and Rhizobium leguminosarum biovar phaseoli against Sclerotinia sclerotiorum (Lib) de Bary in the common bean (Phaseolus vulgaris L.). Plant Pathol J 8:74–78

    Article  Google Scholar 

  • Azcón R, Rubio R, Barea JM (1991) Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N2-fixation (15N) and nutrition of Medicago sativa L. New Phytol 117:399–404

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1981) Field inoculation of Medicago with V-A mycorrhiza and Rhizobium in phosphate-fixing agricultural soil. Soil Biol Biochem 13:19–22

    Article  Google Scholar 

  • Babajide PA, Akanbi WB, Alamu LO, Ewetola EA, Olatunji OO (2008) Growth, nodulation and biomass yield of soybean (Glycine max) as influenced by biofertilizers under simulated eroded soil condition. Res J Agron 2:96–100

    Google Scholar 

  • Bakarr MI, Janos DP (1996) Mycorrhizal associations of tropical legume trees in Sierra Leone, West Africa. Fore Ecol Manage 89:89–92

    Article  Google Scholar 

  • Barea JM, Azcon-Aguilar C (1983) Mycorrhizas and their significance in nodulating nitrogen-fixing plants. In: Brady NC (ed) Advances in agronomy, vol 36. Academic, New York, pp 1–54

    Google Scholar 

  • Barea JM, Werner D, Azcón-Guilar C, Azcón R (2005) Interactions of arbuscular mycorrhiza and nitrogen-fixing symbiosis in sustainable agriculture. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology and the environment. Springer, The Netherlands, pp 199–222

    Chapter  Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Leeuwenhoek 81:343–351

    Article  PubMed  CAS  Google Scholar 

  • Bethlenfalvay GJ, Newton WE (1991) Agro-ecological aspects of the mycorrhizal, nitrogen-fixing legume symbiosis. In: Keisler DL, Cregan PK (eds). The rhizospliere and plant growth, Kluwer Academic Publishers, The Netherlands, pp 349–354

    Chapter  Google Scholar 

  • Behlenfalvay GJ, Brown MS, Stafford AE (1985) Glycine-Rhizobium-symbiosis II. Antagonistic effects between mycorrhizal colonization and nodulation. Plant Physiol 79:1054–1058

    Article  Google Scholar 

  • Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in mown grassland. J Ecol 84:71–82

    Article  Google Scholar 

  • Bradbury SM, Peterson RL, Bowley SR (1991) Interactions between three alfalfa nodulation genotypes and two Glomus species. New Phytol 119:115–120

    Article  Google Scholar 

  • Brownlee C, Duddidge JA, Maliban A, Read D (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilation and water transport. Plant Soil 71:433–443

    Article  Google Scholar 

  • Camila MP, Lazara C (2004) Nitrogen-fixing and vesicular-arbuscular mycorrhizal symbioses in some tropical legume trees of tribe mimoseae. Fore Ecol Manage 196:275–285

    Article  Google Scholar 

  • Cárdenas L, Alemán E, Nava N, Santana O, Sánchez F, Quinto C (2006) Early responses to Nod factors and mycorrhizal colonization in a non-nodulating Phaseolus vulgaris mutant. Planta 223:746–754

    Article  PubMed  CAS  Google Scholar 

  • Cardoso IM, Boddington C, Janssen BH, Oenema O, Kuyper TW (2003) Distribution of mycorrhizal fungal spores in soils under agroforestry and monocultural coffee systems in Brazil. Agrofor Syst 58:33–43

    Article  Google Scholar 

  • Chiariello N, Hickman JC, Mooney MA (1982) Endomycorrhizal role for interspecific transfer of phosphorus in a community of annual plants. Science 217:941–943

    Article  PubMed  CAS  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902

    Article  CAS  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, von Fischer JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochem Cycles 13:623–645

    Article  CAS  Google Scholar 

  • Colozzi A, Cardoso EJBN (2000) Detection of arbuscular mycorrhizal fungi in roots of coffee plants and Crotalaria cultivated between rows. Pesquisa Agropecuaria Brasileira 35:2033–2042

    Article  Google Scholar 

  • Dalpé Y, Monreal M (2004) Arbuscular mycorrhiza inoculum to support sustainable cropping systems. In: Proceedings of a symposium on the great plains inoculant forum. Mar 27–28 2003, Saskatoon, Saskatchewan

    Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1996) In vitro mass-production of the arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycol Res 100:1237–1242

    Article  Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90:579–585

    Article  Google Scholar 

  • Dehne HW, Backhaus GF (1986) The use of vesicular-arbuscular mycorrhizal fungi in plant production. I. Inoculum production. Z Pflanzenkr Pflanzenschutz 93:415–424

    Google Scholar 

  • Demir S, Akkopru A (2007) Using of arbuscular mycorrhizal fungi (AMF) for biocontrol of soil borne fungal plant pathogens. In: Chincholkar SB, Mukerji KG (eds) Biological control of plant diseases. Haworth, USA, pp 17–37

    Google Scholar 

  • Diop TA, Plenchette C, Strullu DG (1994) Dual axenic culture of sheared-root inocula of vesicular-arbuscular mycorrhizal fungi associated with tomato roots. Mycorrhiza 5:17–22

    Article  Google Scholar 

  • Dodd JC, Arias I, Koomen I, Hayman DS (1990) The management of populations of vesicular-arbuscular mycorrhizal fungi in acid-infertile soils of a savanna ecosystem I. The effect of pre-cropping and inoculation with VAM-fungi on plant growth and nutrition in the field. Plant Soil 122:229–240

    Article  CAS  Google Scholar 

  • Duponnois R, Plenchette C, Bâ AM (2001) Growth stimulation of seventeen fallow leguminous plants inoculated with Glomus aggregatum in Senegal. Eur J Soil Biol 37:181–186

    Article  Google Scholar 

  • Eom AH, Lee SS, Ahn TK, Lee MW (1994) Ecological roles of arbuscular mycorrhizal fungi in two wild legume plants. Mycoscience 35:69–75

    Article  Google Scholar 

  • Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature 307:53–56

    Article  CAS  Google Scholar 

  • Franco AA, De Faria SM (1997) The contribution of N2-fixing tree legumes to land reclamation and sustainability in the tropics. Soil Biol Biochem 29:897–903

    Article  CAS  Google Scholar 

  • Geneva M, Zehirov G, Djonova E, Kaloyanova N, Georgiev G, Stancheva I (2006) The effect of inoculation of pea plants with mycorrhizal fungi and Rhizobium on nitrogen and phosphorus assimilation. Plant Soil Environ 52:435–440

    CAS  Google Scholar 

  • Ghosh S, Verma NK (2006) Growth and mycorrhizal dependency of Acacia mangium Willd. Inoculated with three vesicular arbuscular mycorrhizal fungi in lateritic soil. New Fore 31:75–81

    Article  Google Scholar 

  • Gianinazzi S, Vosátka M (2004) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82:1264–1271

    Article  Google Scholar 

  • Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35

    Article  Google Scholar 

  • Habte M, Aziz T (1985) Response of Sesbania grandiflora to inoculation of soil with vesicular-arbuscular mycorrhizal fungi. Appl Environ Microbiol 50:701–703

    PubMed  CAS  Google Scholar 

  • Hamel C, Furlan V, Smith DL (1991) N2-fixation and transfer in a field grown mycorrhizal corn and soybean intercrop. Plant Soil 133:177–185

    Article  CAS  Google Scholar 

  • Harrison MG (2005) Signaling in the arbuscolar mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Ann Rev Plant Physiol 50:361–389

    CAS  Google Scholar 

  • Hayman DS (1986) Mycorrhizae of nitrogen-fixing legumes. World J Microbiol Biotechnol 2:121–145

    Article  Google Scholar 

  • Hazarika DK, Das KK, Dubey LN, Phookan AK (2000) Effect of vesicular arbuscular mycorrhizal (VAM) fungi and Rhizobium on growth and yield of green gram (Vigna radiata (L.) Wilczek.). J Mycol Plant Pathol 30:424–426

    Google Scholar 

  • He X, Pen-Mouratov S, Steinberger Y (2004) Research note: spatial variation of AM fungal spore numbers under canopies of Acacia raddiana. Arid Land Res Manage 18:295–299

    Article  Google Scholar 

  • Heap AJ, Newman EL (1980) Links between roots by hyphae of vesiculararbuscular mycorrhizas. New Phytol 85:169–171

    Article  Google Scholar 

  • Herrera MA, Salamanca CP, Barea JM (1993) Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified mediterranean ecosystems. Appl Environ Microbiol 59:129–133

    PubMed  CAS  Google Scholar 

  • Hodge A, Campbell CDFAH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  PubMed  CAS  Google Scholar 

  • Hooker JE, Black KE (1995) Arbuscular mycorrhizal fungi as components of sustainable soil-plant systems. Crit Rev Biotechnol 15:201–212

    Article  Google Scholar 

  • Hung LL, O’Keefe DM, Sylvia DM (1991) Use of hydrogel as a sticking agent and carrier for vesicular–arbuscular mycorrhizal fungi. Mycol Res 95:427–429

    Article  Google Scholar 

  • Hung LLL, Sylvia DM (1988) Production of vesicular-arbuscular mycorrhizal fungus inoculum in aeroponic culture. Appl Environ Microbiol 54:353–357

    PubMed  CAS  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L I: spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Jia Y, Gray VM, Straker CJ (2004) The influence of Rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Ann Bot 94:251–258

    Article  PubMed  CAS  Google Scholar 

  • Kamprath EJ, Foy CD (1985) Lime-fertilizer-plant interactions in acid soils. In: Englestad O (ed) Fertilizer technology and use, 3rd edn. Soil Science Society of America, Madison, Wisconsin, USA

    Google Scholar 

  • Kayode J, Franco AA (2002) Response of Acacia mangium to rhizobia and arbuscular mycorrhizal fungi. Tropical Sci 42:116–119

    Google Scholar 

  • Khaliel AS, Elkhider KA, Bahkali AH (1999) Response and dependence of haricot bean to inoculation with arbuscular mycorrhiza. Saudi J Biol Sci 6:126–132

    Google Scholar 

  • Khan A (2006) Mycorrhizoremediation–an enhanced form of phytoremediation. J Zhejiang University Sci B7:503–514

    Article  Google Scholar 

  • Kothari SK, Marschner H, Römheld V (1991) Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant Soil 131:177–185

    Article  CAS  Google Scholar 

  • Lapeyrie F (1988) Oxalate synthesis from soil bicarbonate by fungus Paxillus involutus. Plant Soil 110:3–8

    Article  CAS  Google Scholar 

  • Leggett M, Cross J, Hnatowich G, Holloway G (2007) Challenges in commercializing a phosphate-solubilizing microorganism: penicillium bilaiae, a case history. In: Velázquez E, Rodríguez-Barrueco C (eds) First international meeting on miccrobial phosphate solubilization. Springer, The Netherlands, pp 215–222

    Chapter  Google Scholar 

  • Li XL, Marschner H, George E (1991) Acquisition of phosphorus and copper by VA–mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136:49–57

    Article  CAS  Google Scholar 

  • Li Y, Ran W, Zhang R, Sun S, Xu G (2009) Facilitated legume nodulation, phosphate uptake and nitrogen transfer by arbuscular inoculation in an upland rice and mung bean intercropping system. Plant Soil 315:285–296

    Article  CAS  Google Scholar 

  • Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St. Paul, MN, pp 1–26

    Google Scholar 

  • Linderman RG, Paulitz TC (1990) Mycorrhizal rhizobacterial interactions. In: Hornby D (ed) Biological control of soilborne plant pathogens. Wallingford, CABI International

    Google Scholar 

  • Lodwig EM, Hosie AHF, Bourdès A, Findlay K, Allaway D, Karunakaran R, Downie JA, Poole PS (2003) Amino-acid cycling drives nitrogen fixation in the legume–Rhizobium symbiosis. Nature 422:722–726

    Article  PubMed  CAS  Google Scholar 

  • Mahdi AA, Atabani IMA (1992) Response of Bradyrhizobium-inoculated soyabean and lablab bean to inoculation with vesicular–arbuscular mycorrhizae. Exp Agric 28:399–408

    Article  Google Scholar 

  • Maki T, Nomachi M, Yoshida S, Ezawa T (2008) Plant symbiotic microorganisms in acid sulfate soil: significance in the growth of pioneer plants. Plant Soil 310:55–65

    Article  CAS  Google Scholar 

  • Manjunath A, Bagyaraj DJ, Gowda HSG (1984) Dual inoculation with VA mycorrhiza and Rhizobium is beneficial to Leucaena. Plant Soil 78:445–448

    Article  Google Scholar 

  • Marques MS, Pagano M, Scotti M (2001) Dual inoculation of a woody legume (Centrolobium tomentosum) with rhizobia and mycorrhizal fungi in south-eastern Brazil. Agrofor Syst 50:107–117

    Article  Google Scholar 

  • Marschner H (1998) Mineral nutrition of higher plants. Academic, London, Great Britain

    Google Scholar 

  • Martin-Laurent F, Lee SK, Tham FY, Jie H, Diem HG (1999) Aeroponic production of Acacia mangium saplings inoculated with AM fungi for reforestation in the tropics. Fore Ecol Manage 122:199–207

    Article  Google Scholar 

  • Meghvansi MK, Prasad K, Harwani D, Mahna SK (2008) Response of soybean cultivars toward inoculation with three arbuscular mycorrhizal fungi and Bradyrhizobium japonicum in the alluvial soil. Eur J Soil Biol 44:316–323

    Article  CAS  Google Scholar 

  • Mehdi Z, Nahid S-R, Alikhani HA, Nasser A (2006) Responses of lentil to co-inoculation with phosphate-solubilizing rhizobial strains and arbuscular mycorrhizal fungi. J Plant Nutr 29:1509–1522

    Article  CAS  Google Scholar 

  • Menge JA (1984) Inoculum production. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC Press, Boca Raton, FL, pp 187–203

    Google Scholar 

  • Miller RM (1987) The ecology of vesicular-arbuscular mycorrhizae in grass and shrublands. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, pp 135–170

    Google Scholar 

  • Miller-Wideman MA, Watrud LS (1984) Sporulation of Gigaspora margarita on root cultures of tomato. Can J Microbiol 30:642–646

    Article  Google Scholar 

  • Molla MN, Solaiman ARM (2009) Association of arbuscular mycorrhizal fungi with leguminous crops grown in different agro-ecological zones of Bangladesh. Archiv Agron Soil Sci 55:233–245

    Article  CAS  Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251

    Article  CAS  Google Scholar 

  • Mosse B, Thompson JP (1984) Vesicular-arbuscular endomycorrhizal inoculum production. I. Exploratory experiments with beans (Phaseolus vulgaris) in nutrient flow culture. Can J Bot 62:1523–1530

    Article  CAS  Google Scholar 

  • Muchovej RM (2001) Importance of mycorrhizae for agricultural crops. http://edis.ifas.ufl.edu/pdffiles/AG/AG11600.pdf (Last accessed Oct 2009)

  • Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathol 77:1045–1050

    Article  Google Scholar 

  • Muleta D, Assefa F, Nemomissa S, Granhall U (2007) Composition of coffee shade tree species and density of indigenous arbuscular mycorrhizal fungi (AMF) spores in Bonga natural coffee forest, southwestern Ethiopia. Fore Ecol Manage 241:145–154

    Article  Google Scholar 

  • Muleta D, Assefa F, Nemomissa S, Granhall U (2008) Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biol Fertil Soils 44:653–659

    Article  Google Scholar 

  • Nambiar PTC, Anjaiah V (1989) Competition among strains of Bradyrhizobium and vesicular-arbuscular mycorrhizae for groundnut (Arachis hypogaea L.) root infection and their effect on plant growth and yield. Biol Fertil Soils 8:311–318

    Article  Google Scholar 

  • Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681

    Article  PubMed  CAS  Google Scholar 

  • Ndiaye F, Manga A, Diagne-Leye G, Samba SAN, Diop TA (2009) Effects of rock phosphate and arbuscular mycorrhizal fungi on growth and nutrition of Sesbania sesban and Gliricidia sepium. Afr J Microbiol Res 3:305–309

    Google Scholar 

  • Nopamornbodi O, Rojanasiriwong W, Thomsurakul S (1988) Production of VAM fungi, Glomus intradices and G. mosseae in tissue culture. In: Mahadevan A, Raman N, Natarajan K (eds) Mycorrhizae for green Asia. University of Madras, Madras, pp 315–316

    Google Scholar 

  • Nwoko H, Sanginga N (1999) Dependence of promiscuous soybean and herbaceous legumes on arbuscular mycorrhizal fungi and their response to bradyrhizobial inoculation in low P soils. Appl Soil Ecol 13:251–258

    Article  Google Scholar 

  • Oba H (2001) Arbuscular mycorrhizal colonization in Lupinus and related genera. Soil Sci Plant Nutr 47:685–694

    Article  Google Scholar 

  • Oberson A, Fardeau JC, Besson JM, Sticher H (1993) Soil phosphorus dynamics in cropping systems managed according to conventional and biological agricultural methods. Biol Fertil Soils 16:111–189

    Article  CAS  Google Scholar 

  • Oldroyd GED, Harrison MJ, Udvardi M (2005) Peace talks and trade deals: keys to long-term harmony in legume-microbe symbioses. Plant Physiol 137:1205–1210

    Article  PubMed  CAS  Google Scholar 

  • Pacovsky RS, Fuller G, Stafford AE, Paul EA (1986) Nutrient and growth interactions in soybeans colonized with Glomus fasciculatum and Rhizobium japonicum. Plant Soil 92:37–45

    Article  Google Scholar 

  • Pagano MC, Cabello MN, Scotti MR (2007) Phosphorus response of three native Brazilian trees to inoculation with four arbuscular mycorrhizal fungi. J Agric Technol 3:231–240

    Google Scholar 

  • Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85:31–40

    Article  Google Scholar 

  • Quatrini P, Scaglione G, Incannella G, Badalucco L, Puglia AM, Lamantia T (2003) Microbial inoculants on woody legumes to recover a municipal landfill site. Water, Air, and Soil Pollut: Focus 3:189–199

    Article  CAS  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–222

    CAS  Google Scholar 

  • Rao NSS, Tilak KVBR, Singh CS (1986) Dual inoculation with Rhizobium sp. and Glomus fasciculatum enhances nodulation, yield and nitrogen fixation in chickpea (Cicer arietinum Linn). Plant Soil 95:351–359

    Article  Google Scholar 

  • Reid CPP, Woods FW (1969) Translocation of “C” labeled compounds in mycorrhizal and its implications in interplant nutrient cycling. Ecol 50:178–187

    Article  Google Scholar 

  • Requena N, Pérez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plantmicrobe symbiosis aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    Article  PubMed  CAS  Google Scholar 

  • Rogers JB, Laidlaw AS, Christie P (2001) The role of arbuscular mycorrhizal fungi in the transfer of nutrients between white clover and perennial ryegrass. Chemosphere 42:153–159

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Lazano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  Google Scholar 

  • Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271

    Article  CAS  Google Scholar 

  • Sharma AK, Singh C, Akhauri P (2000) Mass culture of arbuscular mycorrhizal fungi and their role in biotechnology. Proc Ind Natl Acad Sci (PINSA) B66:223–238

    Google Scholar 

  • Sharma MP, Gaur A, Bhatia NP, Adholeya A (1996) Growth responses and dependence of Acacia nilotica var. cupriciformis on the indigenous arbuscular mycorrhizal consortium of a marginal wasteland soil. Mycorrhiza 6:441–446

    Article  Google Scholar 

  • Sharma MP, Tanu AG, Sharma OP (2004) Prospects of arbuscular mycorrhiza in sustainable management of root- and soil-borne diseases of vegetable crops. In: Mukerji KG (ed) Fruit and vegetable diseases. Kluwer Academic Publisher, Netherlands, pp 501–539

    Chapter  Google Scholar 

  • Shokri S, Maadi B (2009) Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. J Agron 8:79–83

    Article  CAS  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhizal management in tropical agrosystems. GTZ Publishers, Germany

    Google Scholar 

  • Simms EL, Taylor DL (2002) Partner choice in nitrogen-fixation mutualisms of legumes and rhizobia. Integrat Compar Biol 42:369–380

    Article  Google Scholar 

  • Singh CS, Kapoor A, Wange SS (1991) The enhancement of root colonisation of legumes by vesicular-arbuscular mycorrhizal (VAM) fungi through the inoculation of the legume seed with commercial yeast (Saccharomyces cerevisiae). Plant Soil 131:129–133

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Snoeck D, Zapata F, Domenach A (2000) Isotopic evidence of the transfer of nitrogen fixed by legumes to coffee trees. Biotechnol Agron Soc Environm 4:95–100

    CAS  Google Scholar 

  • Spaink HP (1996) Regulation of plant morphogenesis by lipochin oligosaccharides. Crit Rev Plant Sci 15:559–582

    CAS  Google Scholar 

  • Sprent JI (2001) Nodulation in legumes. Royal Botanic Gardens, London, UK

    Google Scholar 

  • Sprent JI, James EK (2007) Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiol 144:575–581

    Article  PubMed  CAS  Google Scholar 

  • Stancheva I, Geneva M, Djonova E, Kaloyanova N, Sichanova M, Boychinova M, Georgiev G (2008) Response of alfalfa (Medicago sativa L) growth at low accessible phosphorus source to the dual inoculation with mycorrhizal fungi and nitrogen fixing bacteria. Gen Appl Plant Physiol 34:319–326

    CAS  Google Scholar 

  • Sundaredan P, Raja NU, Gunasekaran P (1993) Induction and accumulation of phytoalexins in cowpea roots infected with a mycorrhizal fungus Glomus fasciculatum and their resistance to Fusarium wilt disease. J Biosci 18:291–301

    Article  Google Scholar 

  • Sylvia DM (1999) Fundamentals and applications of arbuscular mycorrhizae: a “biofertilizer” perspective. In: Siqueira JO (ed) Soil fertility, biology, and plant nutrition interrelationships. Viçosa: SBCS, Lavras: UFLA/DCS, pp 705–723

    Google Scholar 

  • Sylvia DM, Hubbell DH (1986) Growth and sporulation of vesicular-arbuscular mycorrhizal fungi in aeroponic and membrane systems. Symbiosis 1:259–267

    Google Scholar 

  • Sylvia DM, Jarstfer AG (1992) Sheared roots inocula of vesicular mycorrhizal fungi. Appl Environ Microbiol 58:229–232

    PubMed  CAS  Google Scholar 

  • Tiwari P, Adholeya A (2002) In vitro co-culture of two AMF isolates Gigaspora margarita and Glomus intraradices on Ri T-DNA transformed roots. FEMS Microbiol Lett 206:39–43

    Article  PubMed  CAS  Google Scholar 

  • Todd C (2004) Mycorrhizal fungi, nature’s key to plant survival and success. Pac Hort 65:8–12

    Google Scholar 

  • Toro M, Azcón R, Barea J (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability [32P] and nutrient cycling. Appl Environm Microbiol 63:4408–4412

    CAS  Google Scholar 

  • Valdenegro M, Barea JM, Azcon R (2001) Influence of arbuscular-mycorrhizal fungi, Rhizobium meliloti strains and PGPR inoculation on the growth of Medicago arborea used as model legume for re-vegetation and biological reactivation in a semi-arid mediterranean area. Plant Growth Regul 34:233–240

    Article  CAS  Google Scholar 

  • Valsalakumar N, Ray JG, Potty VP (2007) Arbuscular mycorrhizal fungi associated with green gram in south India. Agron J 99:1260–1264

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Wiemken A, Sanders IR (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol 157:569–578

    Article  Google Scholar 

  • van der Heijden MGA, Rinaudo V, Verbruggen E, Scherrer C, Bàrberi P, Giovannetti M (2008) The significance of mycorrhizal fungi for crop productivity and ecosystem sustainability in organic farming systems. In: 16th IFOAM organic world congress, Modena, Italy, June 16–20 2008

    Google Scholar 

  • van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752

    Article  PubMed  Google Scholar 

  • van der Vossen HAM (2005) A critical analysis of the agronomic and economic sustainability of organic coffee production. Exp Agric 41:449–473

    Article  Google Scholar 

  • Vankessel C, Singleton PW, Hoben HJ (1985) Enhanced N-transfer from a soybean to maize by vesicular arbuscular mycorrhizal (VAM) fungi. Plant Physiol 79:562–563

    Article  CAS  Google Scholar 

  • Vassilev N, Nikolaeva I, Vassileva M (2005) Polymer-based preparation of soil inoculants: applications to arbuscular mycorrhizal fungi. Rev Environ Sci Biotechnol 4:235–243

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R, Medina A (2001) Preparation of gel-entrapped mycorrhizal inoculum in the presence or absence of Yarowia lipolytica. Biotechnol Lett 23:907–909

    Article  CAS  Google Scholar 

  • Vivas A, Vörös I, Biró B, Campos E, Barea JM, Azcón R (2003) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environ Pollut 126:179–189

    Article  PubMed  CAS  Google Scholar 

  • Warner A (1985) November. U.S. patent 4,551,165

    Google Scholar 

  • Weber J, Ducousso M, Tham FY, Nourissier-Mountou S, Galiana A, Prin Y, Lee SK (2005) Co-inoculation of Acacia mangium with Glomus intraradices and Bradyrhizobium sp. in aeroponic culture. Biol Fertil Soils 41:233–239

    Article  Google Scholar 

  • Weber E, George E, Beck DP, Saxena MC, Marschner H (1992) Vesicular-arbuscular mycorrhiza and phosphorus uptake of chickpea grown in Northern Syria. Exp Agric 28:433–442

    Article  CAS  Google Scholar 

  • Wu FY, Bi YL, Wong MH (2009) Dual inoculation with an arbuscular mycorrhizal fungus and Rhizobium to facilitate the growth of Alfalfa on coal mine substrates. J Plant Nutr 32:755–771

    Article  CAS  Google Scholar 

  • Wubet T, Kottke I, Teketay D, Oberwinkler F (2003) Mycorrhizal status of indigenous trees in dry afromontane forests of Ethiopia. Fore Ecol Manage 179:387–399

    Article  Google Scholar 

  • Wubet T, Weiß M, Kottke I, Teketay D, Oberwinkler F (2004) Molecular diversity of arbuscular mycorrhizal fungi in Prunus africana, an endangered medicinal tree species in dry afromontane forests of Ethiopia. New Phytol 161:517–528

    Article  CAS  Google Scholar 

  • Xavier LJC, Germida JJ (2002) Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol Biochem 34:181–188

    Article  CAS  Google Scholar 

  • Young A (1997) Agroforestry for soil management, CAB International

    Google Scholar 

  • Yun-Jeong L, Eckhard G (2005) Development of a nutrient film technique culture system for arbuscular mycorrhizal plants. Hort Sci 40:378–380

    Google Scholar 

  • Zaharan HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions in an arid climate. Microbiol Mol Biol Rev 63:968–989

    Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Article  Google Scholar 

  • Zarei M, Saleh-Rastin N, Alikhani HA, Aliasgharzadeh N (2006) Responses of lentil to co-inoculation with phosphate-solubilizing rhizobial strains and arbuscular mycorrhizal fungi. J Plant Nutr 29:1509–1522

    Article  CAS  Google Scholar 

  • Zobel RW, Dei Tredici P, Torren JG (1976) Method for growing plants aeroponically. Plant Physiol 57:344–346

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Prof. Md. Saghir Khan for his prompt and kind initiation to write this chapter and for his unreserved material support. I would like to also express my earnest thanks to my wife Elfinesh Tolera for her unvarying encouragement and materials support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diriba Muleta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Muleta, D. (2010). Legume Responses to Arbuscular Mycorrhizal Fungi Inoculation in Sustainable Agriculture. In: Khan, M.S., Musarrat, J., Zaidi, A. (eds) Microbes for Legume Improvement. Springer, Vienna. https://doi.org/10.1007/978-3-211-99753-6_12

Download citation

Publish with us

Policies and ethics