Skip to main content

Visual learning in social insects: From simple associations to higher-order problem solving

  • Chapter
Sensory Perception

Abstract

Visual learning allows the acquisition of new environmental information, which in turn allows adaptive responses when viewing already experienced events again. This capacity is crucial in contexts such as search for food, partner recognition, navigation and defense against potential enemies. It admits different levels of complexity, from simple associative link formation between a visual stimulus (e. g. a specific color) and the consequence of it (e. g. reward or punishment), to more sophisticated performances such as categorization of objects (e. g. animal vs. non-animal) or apprehending abstract rules applicable to unknown visual objects (e. g. “larger than” or “on top of”). In principle, mastering categories and rules allows flexible responses beyond simple forms of learning. Not surprisingly, higherorder forms of visual learning have been mainly studied in vertebrates with larger brains, while the study of simple visual learning has been restricted to animals with small brains such as insects. However, this dichotomy has recently changed, as research on visual learning in social insects (mainly bees and wasps) has yielded surprising results in terms of the sophistication of the tasks that can be mastered. In parallel, the accessibility and small size of insect brains have allowed the characterization of some neural mechanisms of visual learning. Here I review a spectrum of visual learning forms in social insects, from color and pattern learning, visual attention, and top-down image recognition to inter-individual recognition, conditional discrimination, category learning and rule extraction. I discuss the necessity and sufficiency of simple associations to account for complex visual learning and profit from the extensive knowledge on brain organization in insects to discuss neural mechanisms underlying these visual performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson AM (1972) The ability of honey bees to generalize visual stimuli. In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin, pp 207–212

    Chapter  Google Scholar 

  • Avarguès-Weber A, Portelli G, Benard J, Dyer A, Giurfa M (2010) Configural processing enables discrimination and categorization of face-like stimuli in honeybees. J Exp Biol 213: 593–601

    Article  PubMed  Google Scholar 

  • Beier W, Menzel R (1972) Untersuchungen über den Farbensinn der deutschen Wespe (Paravespula germanica F., Hymenoptera, Vespidae): verhaltensphysiologischer Nachweis des Farbensehens. Zool Jb Physiol 76: 441–454

    Google Scholar 

  • Benard J, Giurfa M (2004) A test of transitive inferences in free-flying honeybees: unsuccessful performance due to memory constraints. Learn Mem 11: 328–336

    Article  PubMed  Google Scholar 

  • Benard J, Stach S, Giurfa M (2006) Categorization of visual stimuli in the honeybee Apis mellifera. Anim Cogn 9: 257–270

    Article  PubMed  Google Scholar 

  • Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97: 107–119

    Article  PubMed  CAS  Google Scholar 

  • Camlitepe Y, Aksoy V. (2010) First evidence of fine colour discrimination ability in ants (Hymenoptera, Formicidae). J Exp Biol 213: 72–77

    Article  PubMed  CAS  Google Scholar 

  • Campan R, Lehrer M (2002) Discrimination of closed shapes by two species of bee, Apis mellifera and Megachile rotundata. J Exp Biol 205: 559–572

    PubMed  Google Scholar 

  • Cheng K, Wignall AE (2006) Honeybees (Apis mellifera) holding on to memories: response competition causes retroactive interference effects. Anim Cogn 9: 141–150

    Article  PubMed  Google Scholar 

  • Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86: 361–377

    Article  CAS  Google Scholar 

  • Chittka L, Beier W, Hertel H, Steinmann E, Menzel R (1992) Opponent colour coding is a universal strategy to evaluate the photoreceptor inputs in Hymenoptera. J Comp Physiol A 170: 545–563

    PubMed  CAS  Google Scholar 

  • Collett TS, Collett M (2002) Memory use in insect visual navigation. Nat Rev Neurosci 3: 542–552

    Article  PubMed  CAS  Google Scholar 

  • Collett TS, Graham P, Durier V (2003) Route learning by insects. Curr Opin Neurobiol 13: 718–725

    Article  PubMed  CAS  Google Scholar 

  • D’Ettorre P, Heinze J (2005) Individual recognition in ant queens. Curr Biol 15: 2170–2174

    Article  PubMed  CAS  Google Scholar 

  • de Brito Sanchez MG, Chen C, Li J, Liu F, Gauthier M, Giurfa M (2008) Behavioral studies on tarsal gustation in honeybees: sucrose responsiveness and sucrose-mediated olfactory conditioning. J Comp Physiol A 194: 861–869

    Article  CAS  Google Scholar 

  • Delius JD, Jitsumori M, Siemann M (2000) Stimulus equivalences through discrimination reversals. In: Heyes C, Huber L (eds) The evolution of cognition. MIT Press, Cambridge, Massachusetts, pp 103–122

    Google Scholar 

  • Dyer AG, Chittka L (2004) Fine colour discrimination requires differential conditioning in bumblebees. Naturwissenschaften 91: 224–227

    Article  PubMed  CAS  Google Scholar 

  • Dyer AG, Neumeyer C (2005) Simultaneous and successive colour discrimination in the honeybee (Apis mellifera). J Comp Physiol A 191: 547–557

    Article  Google Scholar 

  • Dyer AG, Neumeyer C, Chittka L (2005) Honeybee (Apis mellifera) vision can discriminate between and recognise images of human faces. J Exp Biol 208: 4709–4714

    Article  PubMed  Google Scholar 

  • Dyer AG, Rosa MGP, Reser DH (2008) Honeybees can recognise images of complex natural scenes for use as potential landmarks. J Exp Biol 211: 1180–1186

    Article  PubMed  Google Scholar 

  • Ehmer B, Gronenberg W (2002) Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). J Comp Neurol 451: 362–373

    Article  PubMed  Google Scholar 

  • Fauria K, Colborn M, Collett TS (2000) The binding of visual patterns in bumblebees. Curr Biol 10: 935–938

    Article  PubMed  CAS  Google Scholar 

  • Fauria K, Dale K, Colborn M, Collett TS (2002) Learning speed and contextual isolation in bumblebees. J Exp Biol 205: 1009–1018

    PubMed  Google Scholar 

  • Fersen L v, Wynne CDL, Delius JD (1990) Deductive reasoning in pigeons. Naturwissenschaften 77: 548–549

    Article  Google Scholar 

  • Frisch K v (1914) Der Farbensinn und Formensinn der Biene. Zool Jb Physiol 37: 1–238

    Google Scholar 

  • Frisch K v (1965) Tanzsprache und Orientierung der Bienen. Springer Verlag Berlin-Heidelberg-New York.

    Book  Google Scholar 

  • Giurfa M (2004) Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften 91(5):228–231

    Article  PubMed  CAS  Google Scholar 

  • Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A 193: 801–824

    Article  Google Scholar 

  • Giurfa M, Lehrer M (2001) Honeybee vision and floral displays: from detection to close-up recognition. In: L Chittka, JD Thomson (eds) Cognitive ecology of pollination. Cambridge University Press, Cambridge, pp 61–82

    Chapter  Google Scholar 

  • Giurfa M, Menzel R (1997) Insect visual perception: complex abilities of simple nervous systems. Curr Opin Neurobiol 7: 505–513

    Article  PubMed  CAS  Google Scholar 

  • Giurfa M, Eichmann B, Menzel R (1996) Symmetry perception in an insect. Nature 382: 458–461

    Article  PubMed  CAS  Google Scholar 

  • Giurfa M, Núñez JA, Chittka L, Menzel R (1995). Colour preferences of flower-naive honeybees. J Comp Physiol A 177: 247–259

    Article  Google Scholar 

  • Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178: 699–709

    Article  Google Scholar 

  • Giurfa M, Zhang S, Jenett A, Menzel R, Srinivasan MV (2001) The concepts of’ sameness’ and ‘difference’ in an insect. Nature 410: 930–933

    Article  PubMed  CAS  Google Scholar 

  • Giurfa M, Schubert M, Reisenman C, Gerber B, Lachnit H (2003) The effect of cumulative experience on the use of elemental and configural visual discrimination strategies in honeybees. Behav Brain Res 145: 161–169

    Article  PubMed  Google Scholar 

  • Grant V (1951) The fertilization of flowers. Sci Amer 12: 1–6

    Google Scholar 

  • Grossmann KE (1971) Belohnungsverzögerung beim Erlernen einer Farbe an einer künstlichen Futterstelle durch Honigbienen. Z Tierpsychol 29: 28–41

    Article  Google Scholar 

  • Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366: 59–63

    Article  Google Scholar 

  • Harnard S (1987) Categorical perception. The groundwork of cognition. Cambridge University Press, Cambridge

    Google Scholar 

  • Hateren JH v, Srinivasan MV, Wait PB (1990) Pattern recognition in bees: orientation discrimination. J Comp Physiol A 197: 649–654

    Google Scholar 

  • Heinrich B (1979) “Majoring” and “minoring” by foraging bumblebees, Bombus vagans: an experimental analysis. Ecology 60: 245–255

    Article  Google Scholar 

  • Hertz M (1929 a) Die Organisation des optischen Feldes bei der Biene I. Z vergl Physiol 8: 693–748

    Article  Google Scholar 

  • Hertz M (1929 b) Die Organisation des optischen Feldes bei der Biene II. Z vergl Physiol 11: 107–145

    Google Scholar 

  • Hertz M (1933) Über figurale Intensitäten und Qualitäten in der optischen Wahrnehmung der Biene. Biol Zb 53: 11–40

    Google Scholar 

  • Hori S, Takeuchi H, Arikawa K, Kinoshita M, Ichikawa N, Sasaki M, Kubo T (2006) Associative visual learning, color discrimination, and chromatic adaptation in the harnessed honeybee Apis mellifera L. J Comp Physiol A 192: 691–700

    Article  Google Scholar 

  • Hori S, Takeuchi H, Kubo T (2007) Associative learning and discrimination of motion cues in the harnessed honeybee Apis mellifera L. J Comp Physiol A 193: 825–833

    Article  Google Scholar 

  • Horridge A (2000) Seven experiments on pattern vision of the honeybee, with a model. Vision Res 40: 2589–2603

    Article  PubMed  CAS  Google Scholar 

  • Horridge A (2003) The effect of complexity on the discrimination of oriented bars by the honeybee (Apis mellifera). J Comp Physiol A 189: 703–714

    Article  CAS  Google Scholar 

  • Horridge A (2006) Visual discriminations of spokes, sectors, and circles by the honeybee (Apis mellifera). J Insect Physiol 52: 984–1003

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara M (1957) Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, Apis mellifica. J Fac Sci Hokkaido Univ Ser VI Zool 13: 458–464

    Google Scholar 

  • Leadbeater E, Chittka L (2005) A new mode of information transfer in foraging bumblebees? Curr Biol 15:R447–R448

    Article  PubMed  CAS  Google Scholar 

  • Leadbeater E, Chittka L (2007) The dynamics of social learning in an insect model, the bumblebee (Bombus terrestris). Behav Ecol Sociobiol 61: 1789–1796

    Article  Google Scholar 

  • Lehrer M (1997) Honeybee’s visual orientation at the feeding site. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser, Basel, pp 115–144

    Chapter  Google Scholar 

  • Lehrer M, Campan R (2004) Shape discrimination by wasps (Paravespula germanica) at the food source: generalization among various types of contrast. J Comp Physiol A 190: 651–663

    Article  Google Scholar 

  • Lehrer M, Campan R (2005) Generalization of convex shapes by bees: what are shapes made of? J Exp Biol 208: 3233–3247

    Article  PubMed  Google Scholar 

  • Liu G, Seiler H, Wen A, Zars T, Ito K, Wolf R, Heisenberg M, Liu L (2006) Distinct memory traces for two visual features in the Drosophila brain. Nature 439: 551–556

    Article  PubMed  CAS  Google Scholar 

  • Lotto RB, Chittka L (2005) Seeing the light: Illumination as a contextual cue to color choice behavior in bumblebees. Proc Nat Acad Sci USA 102: 3852–3856

    Article  PubMed  CAS  Google Scholar 

  • Masquelier T, Thorpe SJ (2007) Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput Biol 3(2):e31

    Article  PubMed  CAS  Google Scholar 

  • Menzel R (1967) Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica). Z vergl Physiol 56: 22–62

    Article  Google Scholar 

  • Menzel R (1968) Das Gedächtnis der Honigbiene für Spektralfarben. I. Kurzzeitiges und langzeitiges Behalten. Z vergl Physiol 60: 82–102

    Article  Google Scholar 

  • Menzel R (1985) Learning in honey bees in an ecological and behavioral context. In: Hölldobler B, Lindauer M (eds) Experimental Behavioral Ecology and Sociobiology. Fischer, Stuttgart, pp 55–74

    Google Scholar 

  • Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185: 323–340

    Article  Google Scholar 

  • Menzel R, Backhaus W (1991) Colour vision in insects. In: Gouras P (ed) Vision and visual dysfunction. The perception of colour. MacMillan Press, London, pp 262–288

    Google Scholar 

  • Menzel R, Greggers U, Hammer M (1993) Functional organization of appetitive learning and memory in a generalist pollinator, the honey bee. In: Papaj D, Lewis AC (eds) Insect Learning: Ecological and Evolutionary Perspectives. Chapman and Hall, New York, pp 79–125

    Chapter  Google Scholar 

  • Menzel R, Steinmann E, de Souza J, Backhaus W (1988) Spectral sensitivity of photoreceptors and colour vision in the solitary bee, Osmia rufa. J Exp Biol 136: 35–52

    Google Scholar 

  • Menzel R, Geiger K, Müller U, Joerges J, Chittka L (1998) Bees travel novel homeward routes by integrating separately acquired vector memories. Anim Behav 55: 139–152

    Article  PubMed  Google Scholar 

  • Miller GA (2003) The cognitive revolution: a historical perspective. Trends Cognit Sci 7: 141–144

    Article  Google Scholar 

  • Núsuñez JA (1982) Honeybee foraging strategies at a food source in relation to its distance from the hive and the rate of sugar flow. J Apicult Res 21: 139–150

    Google Scholar 

  • Pavlov IP (1927) Lectures on conditioned reflexes. International publishers, New York

    Google Scholar 

  • Robertson I (2001) Problem Solving. Psychology Press, Hove

    Book  Google Scholar 

  • Schroter U, Malun D, Menzel R (2007) Innervation pattern of suboesophageal ventral unpaired median neurones in the honeybee brain. Cell Tissue Res 327: 647–667

    Article  PubMed  Google Scholar 

  • Schubert M, Giurfa M, Francucci S, Lachnit H (2002) Nonelemental visual learning in honeybees. Anim Behav 64: 175–184

    Article  Google Scholar 

  • Schwaerzel M, Müller U (2006) Dynamic memory networks: dissecting molecular mechanisms underlying associative memory in the temporal domain. Cell Mol Life Sci 63: 989–998

    Article  CAS  Google Scholar 

  • Shepard RN (1987) Towards a universal law of generalisation for psychological science. Science 237: 1317–1323

    Article  PubMed  CAS  Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2006) Do honeybees detect colour targets using serial or parallel visual search? J Exp Biol 209: 987–993

    Article  PubMed  Google Scholar 

  • Spence KW (1937) The differential response to stimuli varying within a single dimension. Psychol Rev 44: 430–444

    Article  Google Scholar 

  • Srinivasan MV (1994) Pattern recognition in the honeybee: recent progress. J Insect Physiol 40: 183–194

    Article  Google Scholar 

  • Srinivasan MV, Zhang SW, Zhu H (1998). Honeybees link sights to smells. Nature 396: 637–638

    Article  CAS  Google Scholar 

  • Srinivasan MV, Poteser M, Kral K (1999) Motion detection in insect orientation and navigation. Vision Res 39: 2749–2766

    Article  PubMed  CAS  Google Scholar 

  • Stach S, Giurfa M (2005) The influence of training length on generalization of visual feature assemblies in honeybees. Behav Brain Res 161: 8–17

    Article  PubMed  Google Scholar 

  • Stach S, Benard J, Giurfa M (2004) Local-feature assembling in visual pattern recognition and generalization in honeybees. Nature 429: 758–761

    Article  PubMed  CAS  Google Scholar 

  • Swinderen Bv, Greenspan RJ (2003) Salience modulates 20-30 Hz brain activity in Drosophila. Nature Neurosci 6: 579–586

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Guo A (2001) Choice behavior of Drosophila facing contradictory visual cues. Science 294: 1543–1547

    Article  PubMed  CAS  Google Scholar 

  • Terrace HS, McGonigle B (1994) Memory and representation of serial order by children, monkeys and pigeons. Curr Dir Psychol Sci 3: 180–185

    Article  Google Scholar 

  • Tibbets EA (2002) Visual signals of individual identity in the wasp Polistes fuscatus. Proc Biol Sci 269: 1423–1428

    Article  Google Scholar 

  • Tibbets EA, Dale J (2004) A socially enforced signal of quality in a paper wasp. Nature 432: 218–222

    Article  CAS  Google Scholar 

  • Troje F, Huber L, Loidolt M, Aust U, Fieder M (1999) Categorical learning in pigeons: the role of texture and shape in complex static stimuli. Vis Res 39: 353–366

    Article  PubMed  CAS  Google Scholar 

  • Wehner R (1967) Pattern recognition in bees. Nature 215: 1244–1248

    Article  PubMed  CAS  Google Scholar 

  • Wehner R (1971) The generalization of directional visual stimuli in the honeybee Apis mellifera. J Insect Physiol 17: 1579–1591

    Article  Google Scholar 

  • Wehner R (1972) Dorsoventral asymmetry in the visual field of the bee, Apis mellifera. J Comp Physiol A 77: 256–277

    Article  Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Invertebrate Visual Centers and Behavior. Handbook of Sensory Physiology VII/6C. Springer, Berlin, pp 287–616

    Google Scholar 

  • Wilson EO (1971) The Insect Societies. Belknap Press, Cambridge, pp 548

    Google Scholar 

  • Wittstock S, Menzel R (1994) Color learning and memory in honey bees are not affected by protein synthesis inhibition. Behav Neural Biol 62: 224–229

    Article  PubMed  CAS  Google Scholar 

  • Wolf E (1933) Critical frequency of flicker as a function of intensity of illumination for the eye of the bee. J Gen Physiol 17: 7–19

    Article  PubMed  CAS  Google Scholar 

  • Wolf E (1934) Das Verhalten der Biene gegenüber flimmernden Feldern und bewegten Objekten. Z vergl Physiol 20: 151–161

    Article  Google Scholar 

  • Wolf E, Zerrahn-Wolf G (1935) The effect of light intensity, area, and flicker frequency on the visual reactions of the honey bee. J Gen Physiol 18: 853–863

    Article  PubMed  CAS  Google Scholar 

  • Wolf R, Wittig T, Liu L, Wustmann G, Eyding D, Heisenberg M (1998) Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning. Learn Mem 5: 166–78

    PubMed  CAS  Google Scholar 

  • Worden BD, Papaj DR (2005) Flower choice copying in bumblebees. Biol Lett 1: 504–507

    Article  PubMed  Google Scholar 

  • Wüstenberg D, Gerber B, Menzel R (1998) Longbut not medium-term retention of olfactory memories in honeybees is impaired by actinomycin D and anisomycin. Eur J Neurosci 10: 2742–2745

    Article  PubMed  Google Scholar 

  • Yang EC, Maddess T (1997) Orientation-sensitive neurons in the brain of the honey bee (Apis mellifera). J Insect Physiol 43: 329–336

    Article  PubMed  CAS  Google Scholar 

  • Zentall TR, Galizio M, Critchfield TS (2002) Categorization, concept learning and behavior analysis: an introduction. J Exp Anal Behav 78: 237–248

    Article  PubMed  Google Scholar 

  • Zhang S, Srinivasan MV (1994) Prior experience enhances pattern discrimination in insect vision. Nature 368: 330–333

    Article  Google Scholar 

  • Zhang SW, Bartsch K, Srinivasan MV (1996) Maze learning by honeybee. Neurobiol Learn Mem 66: 267–282

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Lehrer M, Srinivasan MV (1999) Honeybee memory: navigation by associative grouping and recall of visual stimuli. Neurobiol Learn Mem 72: 180–201

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Srinivasan MV, Zhu H, Wong J (2004) Grouping of visual objects by honeybees. J Exp Biol 207: 3289–3298

    Article  PubMed  Google Scholar 

  • Zhang S, Bock F, Si A, Tautz J, Srinivasan M (2005) Visual working memory in decision making by honey bees. Proc Natl Acad Sci USA 102: 5250–5255

    Article  PubMed  CAS  Google Scholar 

  • Zeil J, Kelber A, Voss R (1996) Structure and function of learning flights in ground-nesting bees and wasps. J Exp Biol 199: 245–252

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Giurfa, M. (2012). Visual learning in social insects: From simple associations to higher-order problem solving. In: Barth, F.G., Giampieri-Deutsch, P., Klein, HD. (eds) Sensory Perception. Springer, Vienna. https://doi.org/10.1007/978-3-211-99751-2_7

Download citation

Publish with us

Policies and ethics