Skip to main content

Visual motion sensing and flight path control in flies

  • Chapter

Abstract

Flight in insects results from a feedback control loop that turns sensory information at high speed into locomotor commands. Although vision-mediated flight is considered a key factor for understanding navigation and guidance, there is a continuing debate about the exact role of the insect’s compound eye for stability and maneuverability. This chapter focuses on visual motion detection in flies, highlighting the way in which these insects cope with pertur bations of their visual environment. Numerical models are used to predict the precision of the fly’s motor system required for heading stability from the dynamic properties of the sensory organs. Such information allows a better understanding of sensorimotor control strategies in flying insects, and is also of interest for engineers aiming to improve the performance of future generation biomimetic micro air vehicles based on nature-inspired control algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balint CN, Dickinson MH (2001) The correlation between wing kinematics and steering muscle activity in the blowfly Calliphora vicina. J Exp Biol 204: 4213–4226

    PubMed  CAS  Google Scholar 

  • Blondeau J, Heisenberg M (1982) The three dimensional optomotor torque system of Drosophila melanogaster. J Comp Physiol A145: 321–329

    Article  Google Scholar 

  • Brembs B, Christiansen F, Pflüger HJ, Duch C (2007) Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels. J Neurosci 27: 11122–11131

    Article  PubMed  CAS  Google Scholar 

  • Brown JJ, Chippendale GM (1974) Migration of the monarch butterfly, Danaus plexippus: energy resources. J Insect Physiol 20:1117–1130

    Article  PubMed  CAS  Google Scholar 

  • Chapman RF (1998) The insects: structure and function. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Collett TS (1980a) Some operating rules for the optomotor system of a hoverfly during voluntary flight. J Comp Physiol A 138: 271–282

    Article  Google Scholar 

  • Collett TS (1980b) Angular tracking and the optomotor response: an analysis of visual reflex interaction in a hoverfly. J Comp Physiol A 140: 145–158

    Article  Google Scholar 

  • Collett TS, Land MF (1975) Visual control of flight behavior in the hoverfly, Syritta pipiens L. J Comp Physiol A 99:1–66

    Article  Google Scholar 

  • David CT (1985) Visual control of the partition of flight force between lift and thrust in free-flying Drosophila. Nature 313: 48–50

    Article  Google Scholar 

  • Dickinson MH, Birch J, Fry S et al. (2001) Deconstructing the aerodynamics of insect flight. Meeting of the Society of Integrative and Comparative Biology, 41

    Google Scholar 

  • Dudley R (1991) Biomechanics of flight in neotropical butterflies: aerodynamics and mechanical power requirements. J Exp Biol 159: 335–357

    Google Scholar 

  • Dyer FC, Gould JL (1981) Honey bee orientation: A backup system for cloudy days. Science 214: 1041–1042

    Article  PubMed  CAS  Google Scholar 

  • Egelhaaf M, Borst A (1993) A look into the cockpit of the fly: visual orientation, algorithms, and identified neurons. J Neurosci 13: 4563–4574

    PubMed  CAS  Google Scholar 

  • Egelhaaf M, Borst A, Reichardt W (1989) Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly’s nervous system. J Opt Soc Am A 6:1070–1087

    Article  PubMed  CAS  Google Scholar 

  • Egelhaaf M, Borst A, Flecks S, Wildemann A (1993) Neural circuit tuning fly visual interneurons to motion of small objects. II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques. J Neurophysiol 69: 340–351

    PubMed  CAS  Google Scholar 

  • Fayyazuddin A, Dickinson MH (1996) Haltere afferents provide direct, electrotonic input to a steering motor neuron of the blowfly, Calliphora. J Neurosci 16: 5225–5232

    PubMed  CAS  Google Scholar 

  • Fry SN, Sayaman R, Dickinson MH (2003) The aerodynamics of free-flight maneuvers in Drosophila. Science 300: 495–498

    Article  PubMed  CAS  Google Scholar 

  • Frye MA (2007) Behavioral neurobiology: A vibrating gyroscope controls fly steering maneuvers. Curr Biol 17:134–136

    Article  Google Scholar 

  • Gôtz KG (1968) Flight control in Drosophila by visual perception of motion. Biol Cybernetics 4: 199–208

    Google Scholar 

  • Götz KG (1975) Sehen, Abbilden, Erkennen — Verhaltensforschung am visuellen System der Fruchtfliege Drosophila. Verh Schweiz Natur forsch Ges: 10–33

    Google Scholar 

  • Götz KG (1983) Bewegungssehen und Flugsteuerung bei der Fliege Drosophila. In: Nachtigall W (ed) BIONA-report2. Fischer, Stuttgart

    Google Scholar 

  • Götz KG (1987) Relapse to ‘preprogrammed’ visual flight-control in a muscular subsystem of the Drosophila mutant’ small optic lobes’. J Neurogenetics 4:133–135

    Google Scholar 

  • Götz KG, Buchner E (1978) Evidence for one-way movement detection in the visual system of Drosophila. Biol Cybernetics 31: 243–248

    Article  Google Scholar 

  • Götz KG, Wandel U (1984) Optomotor control of the force of flight in Drosophila and Musca II. Covariance of lift and thrust in still air. Biol Cybernetics 51:135–139

    Article  Google Scholar 

  • Gould JL (1986) The locale map of the honey bees: Do insects have cognitive maps? Science 232: 861–863

    Article  PubMed  CAS  Google Scholar 

  • Gronenberg W, Strausfeld NJ (1990) Descending neurons supplying the neck and flight motor of Diptera: Physiological and anatomical characteristics. J Comp Neurol 302: 973–991

    Article  PubMed  CAS  Google Scholar 

  • Gronenberg W, Strausfeld NJ (1992) Premotor descending neurons responding selectively to local visual stimuli in flies. J Comp Neurol 316(1): 87–103

    Article  PubMed  CAS  Google Scholar 

  • Haag J, Egelhaaf M, Borst A (1992) Dentritic integration of motion information in visual interneurons of the blowfly. Neurosci Letters 140:173–176

    Article  CAS  Google Scholar 

  • Hardie CR, Raghu P (2001) Visual transduction in Drosophila. Nature 413:186–193

    Article  PubMed  CAS  Google Scholar 

  • Hausen K, Egelhaaf M (1989) Neural mechanisms of visual course control in insects. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin, Heidelberg

    Google Scholar 

  • Hedrick TL (2007) Experimental study of low speed turning flight in cockatoos and cockatiels. AIAA 2007-0044

    Google Scholar 

  • Hedrick TL, Usherwood JR, Biewener AA (2007) Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus). II. Inertial and aerodynamic reorientation. J Exp Biol 210:1912–1924

    Article  PubMed  CAS  Google Scholar 

  • Hedrick TL, Cheng B, Deng X (2009) Wingbeat time and the scaling of passive rotational damping in flapping flight. Science 324: 252–255

    Article  PubMed  CAS  Google Scholar 

  • Heide G (1971) Die Funktion der nicht-fibrillären Flugmuskeln bei der Schmeißfliege Caliiphora. Teil II: Muskuläre Mechanismen der Flugssteuerung und ihre nervöse Kontrolle. Zool Jb Physiol 76: 99–137

    Google Scholar 

  • Heide G, Götz KG (1996) Optomotor control of course and altitude in Drosophila is achieved by at least three pairs of flight steering muscles. J Exp Biol 199:1711–1726

    PubMed  CAS  Google Scholar 

  • Heisenberg M, Wolf R (1984) Vision in Drosophila. Springer-Verlag, Berlin

    Google Scholar 

  • Heisenberg M, Wolf R (1988) Reafferent control of optomotor yaw torque in Drosophila mela-nogaster. J Comp Physiol A 163: 373–388

    Article  Google Scholar 

  • Hengstenberg R (1991) Body posture, head posture and gaze movements in the fruitfly. Verh Dtsch Zool Ges 8: 344–345

    Google Scholar 

  • Hengstenberg R (1998) Controlling the fly’s gyroscope. Nature 392: 757

    Article  PubMed  CAS  Google Scholar 

  • Hesselberg T, Lehmann F-0 (2007) Turning behaviour depends on frictional damping in the fruit fly Drosophila. J Exp Biol 210: 4319–4334

    Article  PubMed  Google Scholar 

  • Hesselberg T, Lehmann F-O (2009) The role of experience in flight behaviour of Drosophila. J Exp Biol 212: 3377–3386

    Article  PubMed  Google Scholar 

  • Howard J, Dubs A, Payne R (1984) The dynamics of phototransduction in insects: A comparative study. J Comp Physiol A 154: 707–718

    Article  Google Scholar 

  • Huber SA, Franz MO, Bülthoff HH (1999) On robots and flies: modelling the visual orientation behaviour of flies. Rob Auton Syst 29: 227–242

    Article  Google Scholar 

  • Iida F (2003) Biologically inspired visual odometer for navigation in a flying robot. Rob Auton Syst 44: 201–208

    Article  Google Scholar 

  • Kern R, Egelhaaf M (2000) Optomotor course control in flies with largely asymmetric visual input. J Comp Physiol A 186: 45–55

    Article  PubMed  CAS  Google Scholar 

  • Kern R, van Hateren JH, Lindemann JP, Egelhaaf M (2005) Function of a fly motion-sensitive neuron matches eye movements during free flight. PLoS Biology 3:1130–1138

    Article  CAS  Google Scholar 

  • Kirchner W, Srinivasan MV (1989) Freely-flying honeybees use image motion to estimate object distance. Naturwissenschaften 76:281–282

    Article  Google Scholar 

  • Krapp H (2000) Neuronal matched filters for optic flow processing in flying insects. In: Lappe M (ed) Neuronal processing of optic flow. Academic Press, San Diego, San Francisco, New York

    Google Scholar 

  • Krapp HG, Hengstenberg B, Hengstenberg R (1998) Dentritic structure and receptive-field organization of optic flow processing interneurons in the fly. J Neurophysiol 79(4): 1902–1917

    PubMed  CAS  Google Scholar 

  • Krapp HG, Hengstenberg R, Egelhaaf M (2001) Binocular contributions to optic flow processing in the fly visual system. J Neurophysiol 85(2): 724–734

    PubMed  CAS  Google Scholar 

  • Land MF, Collett TS (1974) Chasing Behaviour of houseflies (Fannia canicularis). J Comp Physiol 89: 331–357

    Article  Google Scholar 

  • Lehmann F-O, Götz KG (1996) Activation phase ensures kinematic efficacy in flight-steering muscles of Drosophila melanogaster. J Comp Physiol A 179: 311–322

    Article  PubMed  CAS  Google Scholar 

  • Lehmann F-O, Dickinson MH (1998) The control of wing kinematics and flight forces in fruit flies (Drosophila spp.). J Exp Biol 201: 385–401

    PubMed  Google Scholar 

  • Longden KD, Krapp HG (2009) State-dependent performance of optic-flow processing interneurons. J Neurophysiol 102: 3606–3618

    Article  PubMed  Google Scholar 

  • Maimon G, Straw AD, Dickinson MH (2010) Active flight increases the gain of visual motion processing in Drosophila. Nature Neurosci 13: 393–401

    Article  PubMed  CAS  Google Scholar 

  • Mayer M, Vogtmann K, Bausenwein B, Wolf R, Heisenberg M (1988) Flight control during’ free yaw turns’ in Drosophila melanogaster. J Comp Physiol A163: 389–399

    Article  Google Scholar 

  • Mronz M, Lehmann F-0 (2008) The free flight response of Drosophila to motion of the visual environment. J Exp Biol 211: 2026–2045

    Article  PubMed  Google Scholar 

  • Nalbach G (1993) The halteres of the blowfly Calli-phora I. kinematics and dynamics. J Comp Physiol A 173: 293–300

    Article  Google Scholar 

  • Nalbach G (1994) Extremely non-orthogonal axes in a sense organ for rotation: behavioral ana-lysis of the dipteran haltere system. Neurosci 61:149–163

    Article  CAS  Google Scholar 

  • Nalbach G, Hengstenberg R (1994) The halteres of the blowfly Calliphora II. Three-dimensional organization of compensatory reactions to real and simulated rotations. J Comp Physiol A 174: 695–708

    Google Scholar 

  • Neumann TR, Bülthoff HH (2001) Insect inspired visual control of translatory flight. In: Proc EPSRC/BBSRC, International Workshop on Biologically Inspired Robotics 627–636.

    Google Scholar 

  • O’Carroll D (1993) Feature-detecting neurons in dragonflies. Nature 362: 541–543

    Article  Google Scholar 

  • Pringle JWS (1948) The gyroscopic mechanism of the halteres of Diptera. Phil Trans R Soc Lond B 233: 347–384

    Article  Google Scholar 

  • Ramamurti R, Sandberg WC (2007) A computa tional investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering. J Exp Biol 210: 881–896

    Article  PubMed  Google Scholar 

  • Reichardt W, Poggio T (1975) A theory of the pattern induced flight orientation of the fly Musca domestica II. Biol Cybernetics 18: 69–80

    CAS  Google Scholar 

  • Reichardt W, Poggio T (1976) Visual control of orientation behavior in the fly Part I. a quantitative analysis. Q Rev Biophys 9: 311–375

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W, Egelhaaf M, Guo A (1989) Processing of figure and background motion in the visual system of the fly. Biol Cybernetics 61: 327–345

    Article  Google Scholar 

  • Reiser MB, Dickinson MH (2003) A test bed for insect-inspired robotic control. Phil Trans R Soc Lond A 361: 2267–2285

    Article  Google Scholar 

  • Rosner R, Egelhaaf M, Warzecha A-K (2010) Behavioural state affects motion-sensitive neurones in the fly visual system. J Exp Biol 213: 331–338

    Article  PubMed  CAS  Google Scholar 

  • Sane SP, Dieudonné A, Willis MA, Daniel TL (2007) Antennal mechanosensors mediate flight control in moths. Science 315: 863–866

    Article  PubMed  CAS  Google Scholar 

  • Sherman A, Dickinson MH (2003) A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster. J Exp Biol 206: 295–302

    Article  PubMed  Google Scholar 

  • Si A, Srinivasan M V, Zhang S (2003) Honeybee navigation: properties of the visually driven ‘odometer’. J Exp Biol 206:1265–1273

    Article  PubMed  Google Scholar 

  • Srinivasan MV, Zhang SW, Altwein M, Tautz J (2000) Honeybee navigation: nature and calibration of the “odometer”. Science 287: 851–853

    Article  PubMed  CAS  Google Scholar 

  • Tammero LF, Dickinson MH (2002a) Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. J Exp Biol 205: 2785–2798

    PubMed  Google Scholar 

  • Tammero LF, Dickinson MH (2002b) The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. J Exp Biol 205: 327–343

    PubMed  Google Scholar 

  • Tammero LF, Dickinson MH (2004) Spatial organization of visuomotor reflexes in Drosophila. J Exp Biol 207:113–122

    Article  PubMed  Google Scholar 

  • Tu MS, Dickinson MH (1996) The control of wing kinematics by two steering muscles of the blowfly, Calliphora vicina. J Comp Physiol A 178: 813–830

    Article  PubMed  CAS  Google Scholar 

  • van Hateren JH, Schilstra C (1999) Blowfly flight and optic flight II. Head movements during flight. J Exp Biol 202:1491–1500

    PubMed  Google Scholar 

  • Wagner H (1986) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.)ll. Pursuit of targets. Phil Trans R Soc Lond B312: 553–579

    Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Wolf R, Heisenberg M (1990) Visual control of straight flight in Drosophila melanogaster. J Comp Physiol A167: 269–283

    Google Scholar 

  • Zanker JM (1990) The wing beat of Drosophila melanogaster I. Kinematics. Phil Trans R Soc Lond B327: 1–18

    Google Scholar 

  • Zanker JM (1993) Theta motion: a paradoxical stimulus to explore higher order motion extraction. Vision Res 33: 553–569

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Lehmann, FO., Schützner, P., Wang, H. (2012). Visual motion sensing and flight path control in flies. In: Frontiers in Sensing. Springer, Vienna. https://doi.org/10.1007/978-3-211-99749-9_9

Download citation

Publish with us

Policies and ethics