Skip to main content

Color sensors of butterflies

  • Chapter
Frontiers in Sensing

Abstract

Colorful butterflies are strongly visual animals, and have sophisticated color vision. The compound eyes of the Japanese yellow swallowtail butterfly, Papilio xuthus, contain ultraviolet, violet, blue, green, red and a broad-band class of receptors, which are embedded in the ommatidia in three fixed combinations. The eyes are, therefore, a mesh of three types of spectrally-heterogeneous ommatidia. Given that the eyes of Papilio are equipped with six classes of spectral receptors, their color vision may be hexachromatic. The foraging Papilio can only discriminate a one nanometer difference at three wavelength regions around 430, 480 and 560 nm, indicating that their color vision is actually tetrachromatic. The noise-limited color opponency model has predicted that the tetrachromacy is based on the ultraviolet, blue, green and red receptors. These receptors are contained together in at least one type of ommatidia, where they form a single rhabdom. In principle, such an organization makes the butterfly able to discriminate colors at the single-pixel level. In fact, a foraging butterfly can discriminate between a colored disk and a gray one at their visual subtense angle of around 0.7–1.0 degree, which is close to the limit of the spatial resolution predicted for their eye optics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arikawa K (2003) Spectral organization of the eye of a butterfly, Papilio. J Comp Physiol A 189: 791–800

    Article  CAS  Google Scholar 

  • Arikawa K, Mizuno S, Kinoshita M, Stavenga DG (2003) Coexpression of two visual pigments in a photoreceptor causes an abnormally broad spectral sensitivity in the eye of a butterfly, Papilio xuthus. J Neurosci 23: 4527–4532

    PubMed  CAS  Google Scholar 

  • Arikawa K, Mizuno S, Scholten DG, Kinoshita M, Seki T, Kitamoto J, Stavenga DG (1999) An ultraviolet absorbing pigment causes a narrow-band violet receptor and a single-peaked green receptor in the eye of the butterfly Papilio. Vision Res 39: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Arikawa K, Stavenga DG (1997) Random array of colour filters in the eyes of butterflies. J Exp Biol 200: 2501–2506

    PubMed  Google Scholar 

  • Arikawa K, Wakakuwa M, Qiu X, Kurasawa M, Stavenga DG (2005) Sexual dimorphism of short-wavelength photoreceptors in the small white butterfly, Pieris rapae crucivora. J Neurosci 25: 5935–5942

    Article  PubMed  CAS  Google Scholar 

  • Awata H, Wakakuwa M, Arikawa K (2009) Evolution of color vision in pierid butterflies: blue opsin duplication, ommatidial heterogeneity and eye regionalization in Colias erate. J Comp Physiol A 195: 401–408

    Article  Google Scholar 

  • Bernard GD, Miller WH (1970) What does antenna engineering have to do with insect eyes IEEE Student J 8: 2–8

    Google Scholar 

  • Brainard DH, Williams DR, Hofer H (2008) Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots. J Vis 8:15 11–23

    Article  Google Scholar 

  • Briscoe AD (2000) Six opsins from the butterfly Papilio glaucus: Molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects. J Mol Evol 51: 110–121

    PubMed  CAS  Google Scholar 

  • Briscoe AD (2008) Reconstructing the ancestral butterfly eye: focus on the opsins. J Exp Biol 211: 1805–1813

    Article  PubMed  CAS  Google Scholar 

  • Franceschini N, Kirschfeld K, Minke B (1981) Fluorescence of photoreceptor cells observed in vivo. Science 213: 1264–1267

    Article  PubMed  CAS  Google Scholar 

  • Frisch K von (1914) Der Farbensinn und Formensinn der Biene. Zool J Physiol 37: 1–238

    Google Scholar 

  • Horridge GA, Marcelja L, Jahnke R, Matic T (1983) Single electrode studies on the retina of the butterfly Papilio. J Comp Physiol A 150: 271–294

    Article  Google Scholar 

  • Jackowska M, Bao R, Liu Z, McDonald EC, Cook TA, Friedrich M (2007) Genomic and gene regulatory signatures of cryptozoic adaptation: Loss of blue sensitive photoreceptors through expansion of long wavelength-opsin expression in the red flour beetle Tribolium castaneum. Front Zool 4: 24

    Article  PubMed  Google Scholar 

  • Kinoshita M, Shimada N, Arikawa K (1999) Colour vision of the foraging swallowtail butterfly Papilio xuthus. J Exp Biol 202(Pt 2): 95–102

    PubMed  Google Scholar 

  • Koshitaka H, Kinoshita M, Vorobyev M, Arikawa K (2008) Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc Biol Sci 275: 947–954

    Article  PubMed  Google Scholar 

  • Land MF (1997) Visual acuity in insects. Annu Rev Entomol 42: 147–177

    Article  PubMed  CAS  Google Scholar 

  • Mazzoni EO, Celik A, Wernet MF, Vasiliauskas D, Johnston RJ, Cook TA, Pichaud F, Desplan C (2008) Iroquois complex genes induce co-expression of rhodopsins in Drosophila. PLoS Biol 6: e97

    Article  PubMed  Google Scholar 

  • Nilsson D-E (1989) Optics and evolution of the compound eye. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo, pp 30–73

    Chapter  Google Scholar 

  • Ribi WA (1978) A unique hymenopteran compound eye. The retina fine structure of the digger wasp Sphex cognatus Smith (Hymenoptera, Sphecidae). Zool Jb Anat Bd 100: 299–342

    Google Scholar 

  • Sakamoto K, Hisatomi O, Tokunaga F, Eguchi E (1996) Two opsins from the compound eye of the crab Hemigrapsus sanguineus. J Exp Biol 199: 441–450

    PubMed  CAS  Google Scholar 

  • Sison-Mangus MP, Bernard GD, Lampel J, Briscoe AD (2006) Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. J Exp Biol 209: 3079–3090

    Article  PubMed  CAS  Google Scholar 

  • Stavenga DG, Arikawa K (2006) Evolution of color and vision of butterflies. Arthropod Struct Dev 35: 307–318

    Article  PubMed  Google Scholar 

  • Stavenga DG, Arikawa K (2008) One rhodopsin per photoreceptor: Iro-C genes break the rule. PLoS Biol 6: e115

    Article  PubMed  Google Scholar 

  • Takeuchi Y, Arikawa K, Kinoshita M (2006) Color discrimination at the spatial resolution limit in a swallowtail butterfly, Papilio xuthus. J Exp Biol 209: 2873–2879

    Article  PubMed  Google Scholar 

  • Terakita A, M. K, Tsukamoto H, Yamashita T, Miyata T, Shichida Y (2004) Counterion displacement in the molecular evolution of the rhodopsin family. Nature Struct Molec Biol 11: 284–289

    Article  CAS  Google Scholar 

  • Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc Biol Sci 265: 351–358

    Article  PubMed  CAS  Google Scholar 

  • Wakakuwa M, Kurasawa M, Giurfa M, Arikawa K (2005) Spectral heterogeneity of honeybee ommatidia. Naturwissenschaften 92: 464–467

    Article  PubMed  CAS  Google Scholar 

  • Wakakuwa M, Stavenga DG, Arikawa K (2006) Spectral organization of ommatidia in flower-visiting insects. Photochem Photobiol 83: 27–34

    Article  Google Scholar 

  • Wakakuwa M, Stavenga DG, Kurasawa M, Arikawa K (2004) A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora. J Exp Biol 207: 2803–2810

    Article  PubMed  CAS  Google Scholar 

  • Wakakuwa M, Terakita A, Koyanagi M, Stavenga DG, Shichida Y, Arikawa K (2010) Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies. PLoS ONE 5: e15015

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Arikawa, K. (2012). Color sensors of butterflies. In: Frontiers in Sensing. Springer, Vienna. https://doi.org/10.1007/978-3-211-99749-9_3

Download citation

Publish with us

Policies and ethics