Skip to main content

Single-molecule detection of proteins using nanopores

  • Chapter
Frontiers in Sensing

Abstract

Recently, protein and synthetic nanopores have been employed extensively as single-molecule probes to illuminate the functional features of proteins, including their binding affinity to different ligands, backbone flexibility, enzymatic activity and folding state. In this chapter, I present a brief overview in this emerging area of biosensing. The underlying principle of detection is that the device is based upon a single nanopore drilled into an insulating membrane, which is immersed in a symmetric chamber containing electrolyte solution. The application of a transmembrane potential across the membrane will enable the recording of a well-defined electric current due to the flow of ions crossing the nanopore. The partitioning of single proteins into the interior of the nanopore is detected by discrete current fluctuations that depend upon the interaction between the proteins and the nanopore. The detection mechanisms include chemical modification and genetic engineering of protein nanopores, electrophoretic capture of proteins via movable nucleic acid arms, and functionalization of the inner surface of synthetic nanopores. This approach holds promise for the exploration of proteins at high temporal and spatial resolution. Moreover, nanopore probe techniques can be employed in high-throughput devices used in biomedical molecular diagnosis and environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akeson M, Branton D, Kasianowicz JJ, Brandin E, Deamer DW (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys J 77: 3227–3233

    Article  PubMed  CAS  Google Scholar 

  • Astier Y, Kainov DE, Bayley H, Tuma R, Howorka S (2007) Stochastic detection of motor protein-RNA complexes by single-channel current recording. Chemphyschem 8: 2189–2194

    Article  PubMed  CAS  Google Scholar 

  • Bayley H (1999) Designed membrane channels and pores. Curr Opin Biotechnol 10: 94–103

    Article  PubMed  CAS  Google Scholar 

  • Bayley H (2006) Sequencing single molecules of DNA. Curr Opin Chem Biol 10: 628–637

    Article  PubMed  CAS  Google Scholar 

  • Bayley H, Braha O, Cheley S, Gu LQ (2004) Engineered nanopores. In: Niemeyer CMaMCA (ed) NanoBiotechnology, pp 93–112. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Bayley H, Braha O, Gu LQ (2000) Stochastic sensing with protein pores. Adv Mater 12: 139–142

    Article  CAS  Google Scholar 

  • Bayley H, Cremer PS (2001) Stochastic sensors inspired by biology. Nature 413: 226–230

    Article  PubMed  CAS  Google Scholar 

  • Bayley H, Jayasinghe L (2004) Functional engineered channels and pores (Review). Mol Membr Biol 21: 209–220

    Article  PubMed  CAS  Google Scholar 

  • Bayley H, Martin CR (2000) Resistive-pulse sensing — From microbes to molecules. Chem Rev 100: 2575–2594

    Article  PubMed  CAS  Google Scholar 

  • Becker L, Bannwarth M, Meisinger C, Hill K, Model K, Krimmer T, Casadio R, Truscott KN, Schulz GE, Pfanner N, Wagner R (2005) Preprotein translocase of the outer mitochondrial membrane: reconstituted tom40 forms a characteristic TOM Pore. J Mol Biol 353: 1011–1020

    Article  PubMed  CAS  Google Scholar 

  • Benner S, Chen RJ, Wilson NA, Abu-Shumays R, Hurt N, Lieberman KR, Deamer DW, Dunbar WB, Akeson M (2007) Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat Nanotechnol 2: 718–724

    Article  PubMed  CAS  Google Scholar 

  • Bezrukov SM (2000) Ion channels as molecular Coulter counters to probe metabolite transport. J Membr Biol 174: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Bezrukov SM, Kasianowicz JJ (1993) Current noise reveals protonation kinetics and number of ion-izable sites in an open protein ion channel. Phys Rev Lett 70: 2352–2355

    Article  PubMed  CAS  Google Scholar 

  • Bezrukov SM, Vodyanoy I, Brutyan RA, Kasianowicz JJ (1996) Dynamics and free energy of polymers partitioning into a nanoscale pore. Macromolecules 29: 8517–8522

    Article  CAS  Google Scholar 

  • Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26: 1146–1153

    Article  PubMed  CAS  Google Scholar 

  • Butler TZ, Gundlach JH, Troll M (2007) Ionic current blockades from DNA and RNA molecules in the alpha-hemolysin nanopore. Biophys J 93: 3229–3240

    Article  PubMed  CAS  Google Scholar 

  • Butler TZ, Pavlenok M, Derrington I, Niederweis M, Gundlach JH (2008) Single-molecule DNA detection with an engineered MspA protein nanopore. Proc Natl Acad Sci U S A 105: 20647–20652

    Article  PubMed  CAS  Google Scholar 

  • Cheley S, Xie H, Bayley H (2006) A genetically encoded pore for the stochastic detection of a protein kinase. Chembiochem 7: 1923–1927

    Article  PubMed  CAS  Google Scholar 

  • Cockroft SL, Chu J, Amorin M, Ghadiri MR (2008) A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide reso lution. J Am Chem Soc 130: 818–820

    Article  PubMed  CAS  Google Scholar 

  • Comer J, Dimitrov V, Zhao Q, Timp G, Aksimentiev A (2009) Microscopic mechanics of hairpin DNA translocation through synthetic nanopores. Biophys J 96: 593–608

    Article  PubMed  CAS  Google Scholar 

  • Deamer DW, Akeson M (2000) Nanopores and nucleic acids: prospects for ultrarapid sequencing. Trends Biotechnol 18: 147–151

    Article  PubMed  CAS  Google Scholar 

  • Deamer DW, Branton D (2002) Characterization of nucleic acids by nanopore analysis. Acc Chem Res 35: 817–825

    Article  PubMed  CAS  Google Scholar 

  • Dekker C (2007) Solid-state nanopores. Nature Nanotechnology 2: 209–215

    Article  PubMed  CAS  Google Scholar 

  • Dorvel B, Sigalov G, Zhao Q, Comer J, Dimitrov V, Mirsaidov U, Aksimentiev A, Timp G (2009) Analyzing the forces binding a restriction endonuclease to DNA using a synthetic nanopore. Nucleic Acids Res 37: 4170–4179

    Article  PubMed  CAS  Google Scholar 

  • Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W (1998) Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282: 2215–2220

    Article  PubMed  CAS  Google Scholar 

  • Fologea D, Ledden B, McNabb DS, Li J (2007) Electrical characterization of protein molecules by a solid-state nanopore. Appl Phys Lett 91: 053901

    Article  CAS  Google Scholar 

  • Goodrich CP, Kirmizialtin S, Huyghues-Despointes BM, Zhu AP, Scholtz, J. M., Makarov DE, Movileanu L (2007) Single-molecule electrophoresis of beta-hairpin peptides by electrical recordings and Langevin dynamics simulations. J Phys Chem B 111: 3332–3335

    Article  PubMed  CAS  Google Scholar 

  • Griffiths J (2008) The realm of the nanopore: interest in nanoscale research has skyrocketed, and the humble pore has become a king. Anal Chem 80: 23–27

    Article  PubMed  CAS  Google Scholar 

  • Gurnev PA, Oppenheim AB, Winterhalter M, Bezrukov SM (2006) Docking of a single phage lambda to its membrane receptor maltoporin as a time-resolved event. J Mol Biol 359: 1447–1455

    Article  PubMed  CAS  Google Scholar 

  • Han A, Creus M, Schurmann G, Linder V, Ward TR, de Rooij NF, Staufer U (2008) Label-free detection of single protein molecules and protein-protein interactions using synthetic nanopores. Anal Chem 80: 4651–4658

    Article  PubMed  CAS  Google Scholar 

  • Han A, Schurmann G, Monding G, Bitterli RA, de Rooij NF, Staufer U (2006) Sensing protein molecules using nanofabricated pores. Appl Phys Lett 88: 093901

    Article  CAS  Google Scholar 

  • Hayden T (2008) Threading proteins through a nanopore needle. Anal Chem 80: 3955

    Article  CAS  Google Scholar 

  • Henrickson SE, Misakian M, Robertson B, Kasianowicz JJ (2000) Driven DNA transport into an asymmetric nanometer-scale pore. Phys Rev Lett 85: 3057–3060

    Article  PubMed  CAS  Google Scholar 

  • Hill K, Model K, Ryan MT, Dietmeier K, Martin F, Wagner R, Pfanner N (1998) Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395: 516–521

    Article  PubMed  CAS  Google Scholar 

  • Hinnah SC, Wagner R, Sveshnikova N, Harrer R, Soll J (2002) The chloroplast protein import channel Toc75: Pore properties and interaction with transit peptides. Biophys J 83: 899–911

    Article  PubMed  CAS  Google Scholar 

  • Hornblower B, Coombs A, Whitaker RD, Kolomeisky A, Picone SJ, Meller A, Akeson M (2007) Single-molecule analysis of DNA-protein complexes using nanopores. Nat Methods 4: 315–317

    PubMed  CAS  Google Scholar 

  • Howorka S, Bayley H (2002) Probing distance and electrical potential within a protein pore with tethered DNA. Biophys J 83: 3202–3210

    Article  PubMed  CAS  Google Scholar 

  • Howorka S, Cheley S, Bayley H (2001a) Sequence-specific detection of individual DNA strands using engineered nanopores. Nat Biotechnol 19: 636–639

    Article  PubMed  CAS  Google Scholar 

  • Howorka S, Movileanu L, Braha O, Bayley H (2001 b) Kinetics of duplex formation for individual DNA strands within a single protein nanopore. Proc Natl Acad Sci U S A 98: 12996–13001

    Article  PubMed  CAS  Google Scholar 

  • Howorka S, Movileanu L, Lu XF, Magnon M, Cheley S, Braha O, Bayley H (2000) A protein pore with a single polymer chain tethered within the lumen. J Am Chem Soc 122: 2411–2416

    Article  CAS  Google Scholar 

  • Howorka S, Nam J, Bayley H, Kahne D (2004) Stochastic detection of monovalent and bivalent protein-ligand interactions. Angew Chem Int Ed Engl 43: 842–846

    Article  PubMed  CAS  Google Scholar 

  • Howorka S, Siwy Z (2008) Nanopores: generation, engineering and single-molecule applications. In: Hinterdorfer P (ed) Handbook of single-molecule biophysics, pp In press. Springer-Verlag, Heidelberg, New York

    Google Scholar 

  • Howorka S, Siwy Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38: 2360–2384

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Kirmizialtin S, Makarov DE (2005) Computer simulations of the translocation and unfolding of a protein pulled mechanically through a pore. J Chem Phys 123: 124903

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Makarov DE (2008 a) The rate constant of polymer reversal inside a pore. J Chem Phys 128: 114903

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Makarov DE (2008 b) Translocation of a knotted polypeptide through a pore. J Chem Phys 129: 121107

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Ratliff KS, Matouschek A (2002) Protein unfolding by the mitochondrial membrane potential. Nat Struct Biol 9: 301–307

    Article  PubMed  CAS  Google Scholar 

  • Hyun J, Lee WK, Nath N, Chilkoti A, Zauscher S (2004) Capture and release of proteins on the nanoscale by stimuli-responsive elastin-like polypeptide “switches”. J Am Chem Soc 126: 7330–7335

    Article  PubMed  CAS  Google Scholar 

  • Inobe T, Kraut DA, Matouschek A (2008) How to pick a protein and pull at it. Nat Struct Mol Biol 15: 1135–1136

    Article  PubMed  CAS  Google Scholar 

  • Jung Y, Bayley H, Movileanu L (2006) Temperature-responsive protein pores. J Am Chem Soc 128: 15332–15340

    Article  PubMed  CAS  Google Scholar 

  • Kang XF, Gu LQ, Cheley S, Bayley H (2005) Single protein pores containing molecular adapters at high temperatures. Angew Chem Int Ed Engl 44: 1495–1499

    Article  PubMed  CAS  Google Scholar 

  • Kasianowicz JJ (2004) Nanopores: flossing with DNA. Nat Mater 3: 355–356

    Article  PubMed  CAS  Google Scholar 

  • Kasianowicz JJ, Bezrukov SM (1995) Protonation dynamics of the alpha-toxin ion-channel from spectral-analysis of ph-dependent current fluctuations. Biophys J 69: 94–105

    Article  PubMed  CAS  Google Scholar 

  • Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93: 13770–13773

    Article  PubMed  CAS  Google Scholar 

  • Keyser UF, Koeleman BN, van Dorp S, Krapf D, Smeets RMM, Lemay SG, Dekker NH, Dekker C (2006) Direct force measurements on DNA in a solid-state nanopore. Nature Physics 2: 473–477

    Article  CAS  Google Scholar 

  • Kim M-J, Wanunu M, Bell CD, Meller A (2006) Rapid fabrication of uniform size nanopores and nano pore arrays for parallel DNA analysis. Adv Mater 18: 3149–3153

    Article  CAS  Google Scholar 

  • Kirmizialtin S, Ganesan V, Makarov DE (2004) Translocation of a beta-hairpin-forming peptide through a cylindrical tunnel. J Chem Phys 121: 10268–10277

    Article  PubMed  CAS  Google Scholar 

  • Kirmizialtin S, Huang L, Makarov DE (2005) Topography of the free-energy landscape probed via mechanical unfolding of proteins. J Chem Phys 122: 234915

    Article  PubMed  CAS  Google Scholar 

  • Kirmizialtin S, Huang L, Makarov DE (2006) Computer simulations of protein translocation. Phys Stat Sol (b) 243: 2038–2047

    Article  CAS  Google Scholar 

  • Kong CY, Muthukumar M (2005) Simulations of stochastic sensing of proteins. J Am Chem Soc 127: 18252–18261

    Article  PubMed  CAS  Google Scholar 

  • Krasilnikov OV, Bezrukov SM (2004) Polymer partitioning from nonideal solutions into protein voids. Macromolecules 37: 2650–2657

    Article  CAS  Google Scholar 

  • Krasilnikov OV, Rodrigues CG, Bezrukov SM (2006) Single polymer molecules in a protein nanopore in the limit of a strong polymer-pore attraction. Phys Rev Lett 97: 018301

    Article  PubMed  CAS  Google Scholar 

  • Letellier L, Plancon L, Bonhivers M, Boulanger P (1999) Phage DNA transport across membranes. Res Microbiol 150: 499–505

    Article  PubMed  CAS  Google Scholar 

  • Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA (2001) Ion-beam sculpting at nanometre length scales. Nature 412: 166–169

    Article  PubMed  CAS  Google Scholar 

  • Li PC, Huang L, Makarov DE (2006) Mechanical unfolding of segment-swapped protein G dimer: results from replica exchange molecular dynamics simulations. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 110: 14469–14474

    PubMed  CAS  Google Scholar 

  • Li PC, Makarov DE (2003) Theoretical studies of the mechanical unfolding of the muscle protein titin: Bridging the time-scale gap between simulation and experiment. J Chem Phys 119: 9260–9268

    Article  CAS  Google Scholar 

  • Li PC, Makarov DE (2004a) Simulation of the mechanical unfolding of ubiquitin: probing different unfolding reaction coordinates by changing the pulling geometry. J Chem Phys 121: 4826–4832

    Article  PubMed  CAS  Google Scholar 

  • Li PC, Makarov DE (2004b) Ubiquitin-like protein domains show high resistance to mechanical unfolding similar to that of the 127 domain in titin: Evidence from simulations. J Phys Chem B 108: 745–749

    Article  CAS  Google Scholar 

  • Locher KP, Rees B, Koebnik R, Mitschler A, Moulini-er L, Rosenbusch JP, Moras D (1998) Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferri-chrome-bound states reveal allosteric changes. Cell 95: 771–778

    Article  PubMed  CAS  Google Scholar 

  • Makarov DE (2007) Unraveling individual molecules by mechanical forces: theory meets experiment. Biophys J 92: 4135–4136

    Article  PubMed  CAS  Google Scholar 

  • Makarov DE (2008) Computer simulations and theory of protein translocation. Acc Chem Res 42: 281–289

    Article  CAS  Google Scholar 

  • Manno M, Emanuele A, Martorana V, San Biagio PL, Bulone D, Palma-Vittorelli MB, McPherson DT, Xu J, Parker TM, Urry DW (2001) Interaction of processes on different length scales in a bio-elastomer capable of performing energy conversion. Biopolymers 59: 51–64

    Article  PubMed  CAS  Google Scholar 

  • Martin CR, Siwy ZS (2007) Chemistry. Learning nature’s way: biosensing with synthetic nanopores. Science 317: 331–332

    CAS  Google Scholar 

  • Mathe J, Aksimentiev A, Nelson DR, Schulten K, Meller A (2005) Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc Natl Acad Sci U S A 102: 12377–12382

    Article  PubMed  CAS  Google Scholar 

  • Matouschek A (2003) Protein unfolding — an import ant process in vivo? Curr Opin Struct Biol 13: 98–109

    Article  PubMed  CAS  Google Scholar 

  • Matouschek A, Glick BS (2001) Barreling through the outer membrane. Nat Struct Biol 8: 284–286

    Article  PubMed  CAS  Google Scholar 

  • Mayer M, Semetey V, Gitlin I, Yang J, Whitesides GM (2008) Using ion channel-forming peptides to quantify protein-ligand interactions. J Am Chem Soc 130: 1453–1465

    Article  PubMed  CAS  Google Scholar 

  • McNally B, Wanunu M, Meller A (2008) Electromechanical unzipping of individual DNA molecules using synthetic sub-2 nm pores. Nano Lett 8: 3418–3422

    Article  PubMed  CAS  Google Scholar 

  • Meller A (2003) Dynamics of polynucleotide transport through nanometre-scale pores. J Phys Condens Matter 15: R581–R607

    Article  CAS  Google Scholar 

  • Meller A, Nivon L, Brandin E, Golovchenko J, Branton D (2000) Rapid nanopore discrimination between single polynucleotide molecules. Proc Natl Acad Sci U S A 97: 1079–1084

    Article  PubMed  CAS  Google Scholar 

  • Meyer DE, Chilkoti A (2002) Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: Examples from the elastin-like polypeptide system. Biomacro-molecules 3: 357–367

    Article  CAS  Google Scholar 

  • Meyer DE, Chilkoti A (2004) Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Biomacromolecules 5: 846–851

    Article  PubMed  CAS  Google Scholar 

  • Mohammad MM, Movileanu L (2008) Excursion of a single polypeptide into a protein pore: simple physics, but complicated biology. Eur Biophys J 37: 913–925

    Article  PubMed  CAS  Google Scholar 

  • Mohammad MM, Prakash S, Matouschek A, Movileanu L (2008) Controlling a single protein in a nanopore through electrostatic traps. J Am Chem Soc 130: 4081–4088

    Article  PubMed  CAS  Google Scholar 

  • Movileanu L (2008) Squeezing a single polypeptide through a nanopore. Soft Matter 4: 925–931

    Article  CAS  Google Scholar 

  • Movileanu L (2009) Interrogating single proteins through nanopores: challenges and opportunities. Trends Biotechnol 27: 333–341

    Article  PubMed  CAS  Google Scholar 

  • Movileanu L, Cheley S, Howorka S, Braha O, Bayley H (2001) Location of a constriction in the lumen of a transmembrane pore by targeted covalent attachment of polymer molecules. J Gen Physiol 117: 239–251

    Article  PubMed  CAS  Google Scholar 

  • Movileanu L, Howorka S, Braha O, Bayley H (2000) Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat Biotechnol 18: 1091–1095

    Article  PubMed  CAS  Google Scholar 

  • Movileanu L, Schmittschmitt JP, Scholtz JM, Bayley H (2005) Interactions of the peptides with a protein pore. Biophys J 89: 1030–1045

    Article  PubMed  CAS  Google Scholar 

  • Muro C, Grigoriev SM, Pietkiewicz D, Kinnally KW, Campo ML (2003) Comparison of the TIM and TOM channel activities of the mitochondrial protein import complexes. Biophys J 84: 2981–2989

    Article  PubMed  CAS  Google Scholar 

  • Oukhaled G, Mathe J, Biance A-L, Bacri L, Betton J-M, Lairez D, Pelta J, Auvray L (2007) Unfolding of proteins and long transient conformations detected by single nanopore recording. Phys Rev Lett 98: 158101

    Article  PubMed  CAS  Google Scholar 

  • Prakash S, Inobe T, Hatch AJ, Matouschek A (2009) Substrate selection by the proteasome during degradation of protein complexes. Nat Chem Biol 5: 29–36

    Article  PubMed  CAS  Google Scholar 

  • Prakash S, Matouschek A (2004) Protein unfolding in the cell. Trends Biochem Sci 29: 593–600

    Article  PubMed  CAS  Google Scholar 

  • Rhee M, Burns MA (2007) Nanopore sequencing technology: nanopore preparations. Trends Biotechnol 25: 174–181

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues CG, Machado DC, Chevtchenko SF, Krasilnikov OV (2008) Mechanism of KCl enhancement in detection of nonionic polymers by nanopore sensors. Biophys J 95: 5186–5192

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Quesada J, Ghadiri MR, Bayley H, Braha O (2000) Cyclic peptides as molecular adapters for a pore-forming protein. J Am Chem Soc 122: 11757–11766

    Article  CAS  Google Scholar 

  • Sexton LT, Horne LP, Sherrill SA, Bishop GW, Baker LA, Martin CR (2007) Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J Am Chem Soc 129: 13144–13152

    Article  PubMed  CAS  Google Scholar 

  • Shariff K, Ghosal S, Matouschek A (2004) The force exerted by the membrane potential during protein import into the mitochondrial matrix. Biophys J 86: 3647–3652

    Article  PubMed  CAS  Google Scholar 

  • Shim JW, Gu LQ (2008) Encapsulating a single g-quadruplex aptamer in a protein nanocavity. J Phys Chem B 112: 8354–8360

    Article  PubMed  CAS  Google Scholar 

  • Shim JW, Tan Q, Gu LQ (2009) Single-molecule detection of folding and unfolding of the G-quad-ruplex aptamer in a nanopore nanocavity. Nucleic Acids Res 37: 972–982

    Article  PubMed  CAS  Google Scholar 

  • Siwy Z, Trofin L, Kohli P, Baker LA, Trautmann C, Martin CR (2005) Protein biosensors based on biofunctionalized conical gold nanotubes. J Am Chem Soc 127: 5000–5001

    Article  PubMed  CAS  Google Scholar 

  • Smeets RM, Kowalczyk SW, Hall AR, Dekker NH, Dekker C (2009) Translocation of RecA-Coated Double-Stranded DNA through Solid-State Na-nopores. Nano Lett 9: 3089–3096

    Article  PubMed  CAS  Google Scholar 

  • Song LZ, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274: 1859–1

    Article  PubMed  CAS  Google Scholar 

  • Song S, Wang L, Li J, Zhao J, Fan C (2008) Aptamer-based biosensor. Trends Anal Chem 27: 108–117

    Article  CAS  Google Scholar 

  • Stefureac R, Long YT, Kraatz HB, Howard P, Lee JS (2006) Transport of alpha-helical peptides through alpha-hemolysin and aerolysin pores. Biochemistry 45: 9172–9179

    Article  PubMed  CAS  Google Scholar 

  • Stefureac R, Waldner L, Howard P, Lee JS (2008) Nanopore analysis of a small 86-residue protein. Small 4: 59–63

    Article  PubMed  CAS  Google Scholar 

  • Stefureac RI, Lee JS (2008) Nanopore analysis of the folding of zinc fingers. Small 4: 1646–1650

    Article  PubMed  CAS  Google Scholar 

  • Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 2: 537–540

    Article  PubMed  CAS  Google Scholar 

  • Sutherland T.C, Long YT, Stefureac RI, Bediako-Amoa I, Kraatz HB, Lee JS (2005) Structure of peptides investigated by nanopore analysis. Nano Lett 4: 1273–1277

    Article  CAS  Google Scholar 

  • Talaga DS, Li J (2009) Single-molecule protein unfolding in solid state nanopores. J Am Chem Soc 131: 9287–9297

    Article  PubMed  CAS  Google Scholar 

  • Tian P, Andricioaei I (2005) Repetitive pulling catalyzes co-translocational unfolding of barnase during import through a mitochondrial pore. J Mol Biol 350: 1017–1034

    Article  PubMed  CAS  Google Scholar 

  • Urry DW (1997) Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J Phys Chem B 101: 11007–11028

    Article  CAS  Google Scholar 

  • Urry DW, Hugel T, Seitz M, Gaub HE, Sheiba L, Dea J, Xu J, Parker T (2002) Elastin: a representative ideal protein elastomer. Phil Trans R Soc Lond, B, Biol Sci 357: 169–184

    Article  CAS  Google Scholar 

  • Wanunu M, Sutin J, McNally B, Chow A, Meller A (2008) DNA translocation governed by interactions with solid-state nanopores. Biophys J 95: 4716–4725

    Article  PubMed  CAS  Google Scholar 

  • Wilcox AJ, Choy J, Bustamante C, Matouschek A (2005) Effect of protein structure on mitochondrial import. Proc Natl Acad Sci U S A 102: 15435–15440

    Article  PubMed  CAS  Google Scholar 

  • Wolfe AJ, Mohammad MM, Cheley S, Bayley H, Movileanu L (2007) Catalyzing the translocation of polypeptides through attractive interactions. J Am Chem Soc 129: 14034–14041

    Article  PubMed  CAS  Google Scholar 

  • Xie H, Braha O, Gu LQ, Cheley S, Bayley H (2005) Single-molecule observation of the catalytic subunit of cAMP-dependent protein kinase binding to an inhibitor peptide. Chem Biol 12: 109–120

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Trabbic-Carlson K, Albertorio F, Chilkoti A, Cremer PS (2006) Aqueous two-phase system formation kinetics for elastin-like polypeptides of varying chain length. Biomacromolecules 7: 2192–2199

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, de Zoysa RS, Wang D, Jayawardhana DA, Guan X (2009a) Real-time monitoring of peptide cleavage using a nanopore probe. J Am Chem Soc 131: 6324–6325

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Jayawardhana DA, Wang D, Guan X (2009b) Study of peptide transport through engineered protein channels. J Phys Chem B 113: 3572–3578

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Sigalov G, Dimitrov V, Dorvel B, Mirsaidov U, Sligar S, Aksimentiev A, Timp G (2007) Detecting SNPs using a synthetic nanopore. Nano Lett 7: 1680–1685

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Movileanu, L. (2012). Single-molecule detection of proteins using nanopores. In: Frontiers in Sensing. Springer, Vienna. https://doi.org/10.1007/978-3-211-99749-9_25

Download citation

Publish with us

Policies and ethics