Skip to main content

Microsecond and millisecond time processing in weakly electric fishes

  • Chapter
  • 1826 Accesses

Abstract

Weakly electric fishes possess two distinctive electrosensory systems that are specialized to detect amplitude and time (phase) information. The amplitude sensitive system detects electric feedback signals from the fish’s own electric organ discharges that are altered by the resistive component of nearby objects. The time (phase) sensitive system, on the other hand, detects signal times that are altered by the capacitive component of the objects. These subcomponents of the electrosensory system are fundamental to the fish’s ability to obtain the electric image of its immediate surroundings. The jamming avoidance response is a behavior in which the fish alter the frequency of their electric organ discharges to avoid mutual jamming of the electrolocation behavior. The information necessary to perform correct jamming avoidance responses is encoded in the time pattern of amplitude and time signals that occurs in the millisecond time scale. The time signal is encoded in the difference in phases between signals at different locations on the body surface. This differential phase sensitive system operates on the microsecond time scale. Our behavioral experiments demonstrated that even submicrosecond phase differences could be detected by the electrosensory system and manifested in the jamming avoidance responses. Neurons of the central nervous system that are specialized to process amplitude and differential phase information were found in the electrosensory lateral line lobe. In the midbrain, neurons are sensitive to specific time patterns of activities of the amplitude and differential phase sensitive neurons projecting from the lower station. These midbrain neurons examine time pattern of synaptic potentials and exhibit responses necessary for the jamming avoidance response. The electrosensory system of electric fishes is one of the best-understood systems for temporal coding of sensory information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amagai S, Friedman MA, Hopkins CD (1998) Time coding in the midbrain of mormyrid electric fish. I. Physiology and anatomy of cells in the nucleus exterolateralis pars anterior. J Comp Physiol A 182(2): 115–130

    Article  PubMed  CAS  Google Scholar 

  • Baker CLJ (1980) Jamming avoidance behavior in gymnotoid electric fish with pulse-type discharges: Sensory encoding for a temporal pattern discrimination. J Comp Physiol A 136: 165–181

    Article  Google Scholar 

  • Bell CC, Libouban S, Szabo T (1983) Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish. J Comp Neurol 216: 327–338

    Article  PubMed  CAS  Google Scholar 

  • Bullock TH (1970) The reliability of neurons. J Gen Physiol 55: 565–584

    Article  PubMed  CAS  Google Scholar 

  • Bullock TH, Behrend K, Heiligenberg W (1975) Comparison of the jamming avoidance responses in Gymnotoid and Gymnarchid electric fish: A case of convergent evolution of behavior and its sensory basis. J Comp Physiol 103: 97–121

    Article  Google Scholar 

  • Carlson BA, Kawasaki M (2004) Nonlinear response properties of combination-sensitive electrosen-sory neurons in the midbrain of Gymnarchus niloticus. J Neurosci 24(37): 8039–8048

    Article  PubMed  CAS  Google Scholar 

  • Carlson BA, Kawasaki M (2006) Stimulus selectivity is enhanced by voltage-dependent conductances in combination-sensitive neurons. J Neu-rophysiol 96: 3362–3377

    Google Scholar 

  • Carr CE (1993) Processing of temporal information in the brain. Annu Rev Neurosci 16: 223–243

    Article  PubMed  CAS  Google Scholar 

  • Carr CE, Friedman MA (1999) Evolution of time coding systems. Neural Comput 11(1): 1–20

    Article  PubMed  CAS  Google Scholar 

  • Friedman MA, Hopkins CD (1995) Evidence for mechanisms of temporal analysis in the knollenorgan electrosensory system of mormyrid fish. In: M Burrows et al. (eds) Nervous systems and behavior. Stuttgart: Georg Thieme Verlag, pp. 419

    Google Scholar 

  • Friedman MA, Hopkins CD (1998) Neural substrates for species recognition in the time-coding electrosensory pathway of mormyrid electric fish. J Neurosci 18(3): 1171–1185

    PubMed  CAS  Google Scholar 

  • Guo Y-X, Kawasaki M (1997) Representation of accurate temporal information in the electrosensory system of the African electric fish, Gymnarchus niloticus. J Neurosci 17(5): 1761–1768

    PubMed  CAS  Google Scholar 

  • Heiligenberg W (1975) Electrolocation and jamming avoidance in the electric fish Gymnarchus niloticus (Gymnarchidae, Mormyriformes). J Comp Physiol 103: 55–67

    Article  Google Scholar 

  • Heiligenberg W (1991) Neural nets in electric fish. Cambridge, MA: The MIT Press

    Google Scholar 

  • Heiligenberg W, Baker C, Bastian J (1978) The jamming avoidance response in gymnotoid pulse-species: A mechanisms to minimize the probability of pulse-train coincidence. J Comp Physiol 124: 211–224

    Article  Google Scholar 

  • Heiligenberg W, Bastian J (1980) The control of Eigenmannia’s pacemaker by distributed evaluation of electroreceptive afferences. J Comp Physiol A 136: 113–133

    Article  Google Scholar 

  • Hopkins CD (1986) Behavior of Mormyridae. In: TH Bullock and W Heiligenberg (eds), Electroreception. New York: John Wiley & Sons, pp. 527–576

    Google Scholar 

  • Kawasaki M (1993) Independently evolved jamming avoidance responses employ identical computational algorithms: a behavioral study of the African electric fish, Gymnarchus niloticus. J Comp Physiol A 173(1): 9–22

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki M (1996) Comparative analysis of the jamming avoidance response in African and South American wave-type electric fishes. Biol Bull 191(1): 103–108

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki M, Guo Y-X (1996) Neuronal circuitry for comparison of timing in the electrosensory lateral line lobe of the African wave-type electric fish Gymnarchus niloticus. J Neurosci 16: 380–391

    PubMed  CAS  Google Scholar 

  • Kawasaki M, Guo Y-X (1998) Parallel projection of amplitude and phase information from the hindbrain to the midbrain of the African electric fish Gymnarchus niloticus. J Neurosci 18(18): 7599–7611

    PubMed  CAS  Google Scholar 

  • Kawasaki M, Guo Y-X (2002) Emergence of temporal-pattern sensitive neurons in the midbrain of weakly electric fish Gymnarchus niloticus. J Physiol (Paris) 96: 531–537

    Article  Google Scholar 

  • Kawasaki M, Matsushita A (2009) Behavioral sensitivity to time differences in the electrosensory system of a pulse type gymnotiform fish. Neuro science Abstracts, Chicago: Society for Neuroscience Online

    Google Scholar 

  • Kawasaki M, Rose GJ, Heiligenberg W (1988) Temporal hyperacuity in single neurons of electric fish. Nature 336: 173–176

    Article  PubMed  CAS  Google Scholar 

  • Marcus GF (2008) Kluge: the haphazard construction of the human mind. Boston: Houghton Mifflin.

    Google Scholar 

  • Matsushita A, Kawasaki M (2004) Unitary giant synapses embracing a single neuron at the convergent site of time-coding pathways of an electric fish, Gymnarchus niloticus. J Comp Neurol 472(2): 140–155

    Article  PubMed  Google Scholar 

  • Matsushita A, Kawasaki M (2005) Neuronal sensitivity to microsecond time disparities in the electrosensory system of Gymnarchus niloticus. J Neurosci 25: 11 424–11 432

    Article  CAS  Google Scholar 

  • Miles RN, Hoy RR (2006) The development of a biologically-inspired directional microphone for hearing aids. Audiol Neurootol 11(2): 86–94

    Article  PubMed  CAS  Google Scholar 

  • Réthelyi M, Szabo T (1973) A particular nucleus in the mesencephalon of weakly electric fish, Gymnotus carapo (Gymnotidae, Pisces). Exp Brain Res 17: 229–241

    Article  PubMed  Google Scholar 

  • Rose GJ, Heiligenberg W (1985) Temporal hyperacuity in the electric sense of fish. Nature 318: 178–180

    Article  PubMed  CAS  Google Scholar 

  • Rose GJ, Keller CH, Heiligenberg W (1987) “Ancestral” neural mechanisms of electrolocation suggest a substrate for the evolution of the jamming avoidance response. J Comp Physiol A 160: 491–500

    Article  PubMed  CAS  Google Scholar 

  • von der Emde G (1992) Electrolocation of capacitive objects in four species of pulse-type weakly electric fish. II. Electric signaling behaviour. Ethology 92: 177–192

    Article  Google Scholar 

  • Xu-Friedman MA, Hopkins CD (1999) Central mechanisms of temporal analysis in the knollenorgan pathway of mormyrid electric fish. J Exp Biol 202(10): 1311–1318

    PubMed  Google Scholar 

  • Zipser B, Bennett MVL (1976) Interaction of electrosensory and electromotor signals in lateral line lobe of a mormyrid fish. J Neurophysiol 39: 713–721

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Kawasaki, M. (2012). Microsecond and millisecond time processing in weakly electric fishes. In: Frontiers in Sensing. Springer, Vienna. https://doi.org/10.1007/978-3-211-99749-9_22

Download citation

Publish with us

Policies and ethics