Skip to main content

From biology to engineering: Insect vision and applications to robotics

  • Chapter
Book cover Frontiers in Sensing

Abstract

The past two decades have witnessed a growing interest not only in understanding sensory biology, but also in applying the principles gleaned from these studies to the design of new, biologically inspired sensors for a variety engineering applications. This chapter provides a brief account of this interdisciplinary endeavour in the field of insect vision and flight guidance. Despite their diminutive eyes and brains, flying insects display superb agility and remarkable navigational competence. This review describes our current understanding of how insects use vision to stabilize flight, avoid collisions with objects, regulate flight speed, navigate to a distant food source, and orchestrate smooth landings. It also illustrates how some of these insights from biology are being used to develop novel algorithms for the guidance of terrestrial and airborne vehicles. We use this opportunity to also highlight some of the outstanding questions in this particular area of sensing and control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baird E, Kornfeldt T, Dacke M (2010) Minimum viewing angle for visually guided ground speed control in bumblebees. J Exp Biol 213: 1625–1632

    Article  PubMed  Google Scholar 

  • Baird E, Srinivasan MV, Zhang SW, Cowling A (2005) Visual control of flight speed in honeybees. J Exp Biol 208: 3895–3905

    Article  PubMed  Google Scholar 

  • Baird E, Srinivasan MV, Zhang SW, Lamont R, Cowling A (2006) Visual control of flight speed and height in the honeybee. From Animals to Animats 9, Proc 4095: 40–51

    Article  Google Scholar 

  • Barron A, Srinivasan MV (2006) Visual regulation of ground speed and headwind compensation in freely flying honey bees (Apis mellifera L). J Exp Biol 209: 978–984

    Article  PubMed  Google Scholar 

  • Barrows GL, Chahl JS, Srinivasan MV (2003) Biologic ally inspired visual sensing and flight Control. Aeronautical J 107: 159–168

    Google Scholar 

  • Beyeler A (2009) Vision-based control of near-obstacle flight. Ecole Polytechnique Federale de Lausanne, Lausanne

    Google Scholar 

  • Borst A (2009) Drosophila’s view on insect vision. Curr Biol 19: R36–R47

    Article  PubMed  CAS  Google Scholar 

  • Bruckner A, Duparre J, Wippermann F, Dannberg P, Brauer A (2009) Microoptical artificial compound eyes. In: Floreano D, Zufferey JC, Srinivasan MV, Ellington C (eds) Flying insects and robots. Springer-Verlag, Berlin, Heidelberg, pp 127–142

    Chapter  Google Scholar 

  • Chahl J, Thakoor S, Le Bouffant N, Stange G, Srinivasan MV, Hine B, Zornetzer S (2003) Bioinspired engineering of exploration systems: A horizon sensor/attitude reference system based on the dragonfly ocelli for mars exploration applications. J Robotic Systems 20: 35–42

    Article  Google Scholar 

  • Chahl JS, Srinivasan MV (1996) Visual computation of egomotion using an image interpolation technique. Biol Cybern 74: 405–411

    Article  PubMed  CAS  Google Scholar 

  • Chahl JS, Srinivasan MV (1997) Reflective sur faces for panoramic imaging. Applied Optics 36: 8275–8285

    Article  PubMed  CAS  Google Scholar 

  • Chahl JS, Srinivasan MV, Zhang SW (2004) Landing strategies in honeybees and applications to uninhabited airborne vehicles. Int J Robot Res 23: 101–110

    Article  Google Scholar 

  • Collett TS, Baron J (1994) Biological compasses and the coordinate frame of landmark memories in honeybees. Nature 368: 137–140

    Article  Google Scholar 

  • Dickinson MH (1999) Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. Phil Trans R Soc B 354: 903–916

    Article  PubMed  CAS  Google Scholar 

  • Dyhr JP, Higgins CM (2010) The spatial-frequency tuning of optic-flow-dependent behaviors in the bumblebee Bombus impatiens. J Exp Biol 213: 1643–1650

    Article  PubMed  Google Scholar 

  • Egelhaaf M (2008) Fly vision: Neural mechanisms of motion computation. Curr Biol 18: R339–R341

    Article  PubMed  CAS  Google Scholar 

  • Esch H, Burns J (1996) Distance estimation by foraging honeybees. J Exp Biol 199: 155–162

    PubMed  Google Scholar 

  • Esch HE, Burns JE (1995) Honeybees use optic flow to measure the distance of a food source. Naturwissenschaften 82: 38–40

    Article  CAS  Google Scholar 

  • Esch HE, Zhang SW, Srinivasan MV, Tautz J (2001) Honeybee dances communicate distances measured by optic flow. Nature 411: 581–583

    Article  PubMed  CAS  Google Scholar 

  • Floreano D, Zufferey J-C, Srinivasan MV, Ellington C (2009) Flying insects and robots. Springer, Berlin, Heidelberg

    Google Scholar 

  • Fry SN, Rohrseitz N, Straw AD, Dickinson MH (2009) Visual control of flight speed in Drosophila me-lanogaster. J Exp Biol 212: 1120–1130

    Article  PubMed  Google Scholar 

  • Garratt MA, Chahl JS (2008) Vision-based terrain following for an unmanned aircraft. J Field Robotics 25: 284–301

    Article  Google Scholar 

  • Geurten BRH, Nordstrom K, Sprayberry JDH, Bolzon DM, O’Carroll DC (2007) Neural mechanisms underlying target detection in a dragonfly centrifugal neuron. J Exp Biol 210: 3277–3284

    Article  PubMed  Google Scholar 

  • Goodman L (2003) Form and function in the honeybee. Internat Bee Res Assoc, Cardiff, U. K.

    Google Scholar 

  • Hengstenberg R (1993) Multisensory control in insect oculomotor control systems. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 285–298

    Google Scholar 

  • Hrncir M, Jarau S, Zucchi R, Barth FG (2003) A sting-less bee (Melipona seminigra) uses optic flow to estimate flight distances. J Comp Physiol A 189: 761–768

    Article  CAS  Google Scholar 

  • Hsu CY, Ko FY, Li CW, Fann K, Lue JT (2007) Magnetoreception system in honeybees (Apis mellifera). PLoS One 2: e395

    Article  PubMed  Google Scholar 

  • Humbert JS, Hyslop AM (2010) Bioinspired visuo-motor convergence. Ieee T Robot 26: 121–130

    Article  Google Scholar 

  • Ibbotson MR (2001) Evidence for velocity-tuned motion-sensitive descending neurons in the honeybee. Proc R Soc Lond B 268: 2195–2201

    Article  CAS  Google Scholar 

  • Jeong K-H, Kim JH, Lee LP (2006) Biologically inspired artificial compound eyes. Science 312: 557–561

    Article  PubMed  CAS  Google Scholar 

  • Joesch M, Plett J, Borst A, Reiff DF (2008) Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr Biol 18: 368–374

    Article  PubMed  CAS  Google Scholar 

  • Kirschvink JL, Kobayashi A (1991) Is geomagnetic sensitivity real? Replication of the Walker-Bitterman magnetic conditioning experiment in honey bees. Am Zool 31: 169–185

    Google Scholar 

  • Ko HC, Stoykovich MP, Song J, Malyarchuk V, Choi WM, Yu C-J, Geddes III JB, Xiao J, Wang S, Huang Y, Rogers JA (2008) A hemispherical elecronic eye camera based on compresible silicoan optoelectronics. Nature 454: 748–753

    Article  PubMed  CAS  Google Scholar 

  • Krapp HG (2000) Neuronal matched filters for optic flow processing in flying insects. Int Rev Neuro-biol 44: 93–120

    Article  CAS  Google Scholar 

  • Land MF, Collett TS (1974) Chasing behaviour of houseflies (Fania cannicularis). A description and analysis. J Comp Physiol 89: 331–357

    Article  Google Scholar 

  • Lee LP, Szema R (2005) Inspirations form biological optics for advanced photonic systems. Science 310: 1148–1150

    Article  PubMed  CAS  Google Scholar 

  • Luu T, Cheung A, Ball D, Srinivasan MV (in press) Honeybee flight: A novel’ streamlining’ response. J Exp Biol

    Google Scholar 

  • Maddern W, Wyeth G (2010) Egomotion estimation with a biologically-inspired hemispheric camera. 12th Australasian Conf on Robotics and Automation, Brisbane

    Google Scholar 

  • Mizutani A, Chahl JS, Srinivasan MV (2003) Motion camouflage in dragonflies. Nature 423: 604–604

    Article  PubMed  CAS  Google Scholar 

  • Moore RJD, Thurrowgood S, Bland D, Soccol D, Srinivasan M (2010) UAV altitude and attitude stabilization using a coaxial stereo vision system. IEEE Internat Conf on Robotics and Automation. IEEE Press, Anchorage, Alaska

    Google Scholar 

  • Moore RJD, Thurrowgood S, Bland D, Soccol D, Srinivasan MV (2011) A bio-inspired stereo vision system for guidance of autonomous aircraft. In: Bhatti A (ed) Advances in theory and aplications of stereo vision. InTech Publishers, Rijeka

    Google Scholar 

  • Moore RJD, Thurrrowgood S, Bland D, Soccol D, M. V S (2009) A stereo vision system for UAV guidance. IEEE/RSJ Internat Conf on Intelligent Robots and Systems, St. Louis, Missouri, USA

    Google Scholar 

  • Nordstrom K, Barnett PD, Moyer de Miguel I, O’Carroll DC (2008) Sexual dimorphism in the hoverfly motion vision pathway. Curr Biol 18: 661–667

    Article  PubMed  Google Scholar 

  • Nordstrom K, Barnett PD, O’Carroll DC (2006) Insect detection of small targets moving in visual clutter. PloS Biology 4: e54

    Article  PubMed  Google Scholar 

  • Nourani-Vatani N, Roberts J, Srinivasan MV (2009) Practical visual odometry for car-like vehicles. IEEE Internat Conf on Robotics and Automation. IEEE Press, Kobe, Japan

    Google Scholar 

  • Olberg RM, Leonardo A (2010) Towards wireless monitoring of neural activity during dragonfly prey interception flights. Ninth Internat Congress of Neuroethology. International Society for Neuroethology, Salamanca, Spain, p 25

    Google Scholar 

  • Olberg RM, Worthington AH, Venator KR (2000) Prey pursuit and interception in dragonflies. J Comp Physiol A 186: 155–162

    Article  PubMed  CAS  Google Scholar 

  • Portelli G Ruffier F Franceschini N 2010 a Honeybees change their height to restore their optic flow. J Comp Physiol A 196: 307–313

    Article  Google Scholar 

  • Portelli G, Serres J, Ruffier F, Franceschini N (2010b) Modelling honeybee visual guidance in a 3-D environment. J Physiol-Paris 104: 27–39

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W (1969) Movement perception in insects. In: Reichardt W (ed) Processing of optical data by organisms and by machines. Academic Press, New York, pp 465–493

    Google Scholar 

  • Sane SP, Dieudonne A, Willis MA, Daniel TL (2007) Antennal mechanosensors mediate flight control in moths. Science 315: 863–866

    Article  PubMed  CAS  Google Scholar 

  • Serres JR, Masson GP, Ruffier F, Franceschini N (2008) A bee in the corridor: centering and wall-following. Naturwissenschaften 95: 1181–1187

    Article  PubMed  CAS  Google Scholar 

  • Soccol D, Thurrowgood S, Srinivasan MV (2007) A vision system for optic-flow-based guidance of UAVs. Proc, Ninth Australasian Conf on Robotics and Automation, Brisbane

    Google Scholar 

  • Srinivasan M (1993) How insects infer range from visual motion. In: Miles F, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 139–156

    Google Scholar 

  • Srinivasan M, Thurrowgood S, Soccol D (2009) From flying insects to autonomously navigating robots. IEEE Robotics and Automation Magazine 16: 59–71

    Article  Google Scholar 

  • Srinivasan M, Zhang S, Lehrer M, Collett T (1996) Honeybee navigation en route to the goal: visual flight control and odometry. J Exp Biol 199: 237–244

    PubMed  Google Scholar 

  • Srinivasan MV (1990) Generalized gradient schemes for the measurement of 2-dimensional image motion. Biol Cybern 63: 421–431

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan MV (1994) An image-interpolation technique for the computation of optic flow and egomotion. Biol Cybern 71: 401–415

    Article  Google Scholar 

  • Srinivasan M V (2011) Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Physiol Rev 91: 389–411

    Article  Google Scholar 

  • Srinivasan MV (in press) Visual control of navigation in insects and its relevance for robotics. Curr Opinion Neurobiol

    Google Scholar 

  • Srinivasan MV, Chahl JS, Nagle MG, Zhang SW (1997a) Embodying natural vision into machines. In: Srinivasan MV, Venkatesh S (eds) From living eyes to seeing machines. Oxford University Press, U. K., pp 249–265

    Google Scholar 

  • Srinivasan MV, Thurrowgood S, Soccol D (2006) An optical system for guidance of terrain following in UAVs. IEEE Internat Conf on Advanced Video and Signal Based Surveillance (AVSS’ 06). IEEE Press, Sydney, pp 51–56

    Google Scholar 

  • Srinivasan MV, Zhang SW, Altwein M, Tautz J (2000a) Honeybee navigation: Nature and calibration of the “odometer”. Science 287: 851–853

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan MV, Zhang SW, Bidwell NJ (1997b) Visually mediated odometry in honeybees. J Exp Biol 200: 2513–2522

    PubMed  Google Scholar 

  • Srinivasan MV, Zhang SW, Chahl JS, Barth E, Venkatesh S (2000b) How honeybees make grazing landings on flat surfaces. Biol Cybern 83: 171–183

    Article  PubMed  CAS  Google Scholar 

  • Stange G (1981) The ocellar component of flight equilibrium control in dragonflies. J Comp Physiol A 141: 335–347

    Article  Google Scholar 

  • Straw AD, Lee S, Dickinson MH (2010) Visual control of altitude in flying Drosophila. Curr Biol 20: 1–7

    Article  Google Scholar 

  • Straw AD, Rainsford T, O’Carroll DC (2008) Contrast sensitivity of insect motion detectors to natural images. J Vision 8: 1–9

    Article  Google Scholar 

  • Stuerzl W, Srinivasan MV (2010) Omnidirectional system with constant elevational gain and single viewpoint. Tenth Workshop on Omnidirectional Vision, Camera Networks and Sensors Zaragoza, Spain

    Google Scholar 

  • Tammero LF, Dickinson MH (2002) The influence of visual landscape on the free flight behavior of the fruit fly Drosphila melanogaster. J Exp Biol 205: 327–343

    PubMed  Google Scholar 

  • Taylor GJ, Luu T, Ball D, Srinivasan MV (2011) Keeping up the pace: Honeybee flight speed regulation in a tethered flight arena. Proc, Australasian Soc for the Study of Animal Behaviour. ASSAB, Flinders University, Adelaide, p 57

    Google Scholar 

  • Thurrowgood S, Moore RJD, Bland D, Soccol D, Srinivasan MV (2010) UAV attitude control using the visual horizon. Twelfth Australasian Conf on Robotics and Automation, Brisbane

    Google Scholar 

  • Thurrowgood S, Soccol D, Moore RJD, Bland D, Srinivasan MV (2009) A vision based system for attitude estimation of UAVs. IEEE /RSJ Internat Conf on Intelligent Robots and Systems, ST. Louis, Missouri, USA

    Google Scholar 

  • Todorovic S, Nechbya MC (2004) A vision system for intelligent mission profiles of micro air vehicles. IEEE Transactions on Vehicular Technology 53: 1713–1725

    Article  Google Scholar 

  • van Kleef J, James AC, Stange G (2005) A spatio-temporal white noise analysis of photoreceptor responses to UV and green light in the dragonfly median ocellus. J Gen Physiol 126: 481–497

    Article  PubMed  Google Scholar 

  • Walker MM, Bitterman ME (1985) Conditioned responding to magnetic fields by honey bees. J Comp Physiol A 157: 67–73

    Article  Google Scholar 

  • Weber K, Venkatesh S, Srinivasan MV (1997) Insect inspired behaviours for the autonomous control of mobile robots. From living eyes to seeing machines. Oxford University Press, U. K., pp 226–248

    Google Scholar 

  • Wehner R, Labhart T (2006) Polarization vision In: Warrant E, Nilsson D-E (eds) Invertebrate vision. Cambridge University Press, Cambridge, U. K, pp 291–348

    Google Scholar 

  • Wittlinger M, Wehner R, Wolf H (2007) The desert ant odometer: a stride integrator that accounts for stride length and walking speed. J Exp Biol 210: 198–207

    Article  PubMed  Google Scholar 

  • Yagi Y, Nishizaw Y, Yachida M (1995) Map-based navigation for a mobile robot with omnidirectional image sensor COPIS. IEEE Transactions on Robotics and Automation 11: 634–648

    Article  Google Scholar 

  • Zeil J, Nalbach G, Nalbach H-O (1986) Eyes, eye-stalks and the visual world of semi-terrestrial crabs. J Comp Physiol A 159: 801–811

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Srinivasan, M.V., Moore, R.J.D., Thurrowgood, S., Soccol, D., Bland, D. (2012). From biology to engineering: Insect vision and applications to robotics. In: Frontiers in Sensing. Springer, Vienna. https://doi.org/10.1007/978-3-211-99749-9_2

Download citation

Publish with us

Policies and ethics