Skip to main content

Assessing the mechanical response of groups of arthropod filiform flow sensors

  • Chapter

Abstract

Many arthropod filiform flow sensors contain hundreds of sensilla that respond to complex natural airflow stimuli. The combination of complex morphology and richness of natural stimuli present a significant challenge for modeling these sensory apparatuses. We survey advances in our understanding over the last five years of the interactions between filiform hairs immersed in airflow. We then discuss a general characterization of filiform hair response based on our work modeling the cricket cercal system, which utilizes a newly developed unsteady Stokes model to investigate the response of a group of hairs to temporally complex signals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barth FG (2002) Spider senses-technical perfection and biology. Zoology 105: 271–285

    Article  PubMed  Google Scholar 

  • Barth FG, Höller A (1999) Dynamics of arthropod filiform hairs. V. The response of spider trichobothria to natural stimuli. Phil Trans R Soc Lond B 354: 183–192

    Article  Google Scholar 

  • Barth FG, Wastl U, Humphrey JAC, Devarakonda R (1993) Dynamics of arthropod filiform hairs. II. Mechanical properties of spider trichobothria (Cupiennius salei Keys.). Phil Trans R Soc Lond B 340: 445–461

    Article  Google Scholar 

  • Bathellier B, Barth FG, Albert JT, Humphrey JAC (2005) Viscosity-mediated motion coupling between pair of trichobothria on the leg of the spider Cupiennius salei. J Comp Physiol A 191: 733–746

    Article  Google Scholar 

  • Bathellier B, Barth FG, Albert JT, Humphrey JAC (2010) Erratum to Bathellier et al. (2005). J Comp Physiol A 196,1: 89

    Article  Google Scholar 

  • Casas J, Steinmann T, Dangles O. (2008) The aerodynamic signature of running spiders. PLoS ONE 3: e2116 (doi: 10 1371/journal.pone.00021 16)

    Google Scholar 

  • Cheer AYL, Koehl MAR (1987) Paddles and rakes: Fluid flow through bristled appendages of small organisms. J Theor Biol 129: 17–39

    Article  Google Scholar 

  • Cortez R (2001) The method of regularized Stokeslets. SIAM J Sci Comput 23: 1204–1225

    Article  Google Scholar 

  • Cortez R, Cummins B, Gregg KL, Varela D (2010) Computation of Brinkman flows using regularization methods. J Comp Phys A 229: 7609–7624

    Article  CAS  Google Scholar 

  • Cummins B (2009) Determining the biomechanical response of a filiform hair array: a low Reynolds number fluid-structure model. PhD thesis, Montana State University, Bozeman MT

    Google Scholar 

  • Cummins B, Gedeon T (2007) A refined model of viscous coupling between filiform hairs in the cricket cercal system. Proc IMECE2007, #41075

    Google Scholar 

  • Cummins B, Gedeon T, Klapper I, Cortez R (2007) Interaction between arthropod filiform hairs in a fluid environment. J Theor Biol 247: 266–280

    Article  PubMed  Google Scholar 

  • Dangles O, Magal C, Pierre D, Olivier A, Casas J (2005) Variation in morphology and performance of predator-sensing system in wild cricket populations. J Exp Biol 208: 461–468

    Article  PubMed  Google Scholar 

  • Dangles O, Ory N, Steinmann T, Christides JP, Casas J (2006 a) Spider’s attack versus cricket’s escape: velocity modes determine success. Anim Behav 72: 603–610

    Article  Google Scholar 

  • Dangles O, Pierre D, Magal C, Vannier F, Casas J (2006 b) Ontogeny of air-motion sensing in cricket. J Exp Biol 209: 4363–4370

    Article  PubMed  CAS  Google Scholar 

  • Fletcher NH (1978) Acoustical response of hair receptors in insects. J Comp Physiol A 127: 185–189

    Article  Google Scholar 

  • Gnatzy W, Tautz J (1980) Ultrastructure and mechanical properties of an insect mechanoreceptor: stimulus-transmitting structures and sensory apparatus of the cercal filiform hairs of Gryllus. Cell Tissue Res 213: 441–463

    PubMed  CAS  Google Scholar 

  • Heys J, Gedeon T, Knott BC, Kim Y (2008) Modeling arthropod hair motion using the penalty immersed boundary method. J Biomech Eng 41: 977–984

    Article  CAS  Google Scholar 

  • Humphrey JAC, Barth FG (2008) Medium flow-sensing hairs: biomechanics and models. In: Casas J, Simpson SJ (eds) Advances in insect physiology: Insect mechanics and control. 34: 1–80. Academic Press: London

    Google Scholar 

  • Humphrey JAC, Devarakonda R, Iglesias I, Barth FG (1993) Dynamics of arthropod filiform hairs. I. Mathematical modelling of the hair and air motions. Phil Trans R Soc Lond B 340: 423–444

    Article  Google Scholar 

  • Kant R, Humphrey JAC (2009) Response of cricket and spider motion-sensing hairs to airflow pulsations. J R Soc Interface doi: 10 1098/rsif.2 008 0523

    Google Scholar 

  • Kim Y, Peskin CS (2007) Penalty immersed boundary method for an elastic boundary with mass. Physics of Fluids 19: 053103–053118

    Article  Google Scholar 

  • Kumagai T, Shimozawa TA, Baba Y (1998a) Mobilities of the cercal wind-receptor hairs of the cricket. J Comp Physiol A 183: 7–21

    Article  Google Scholar 

  • Kumagai T, Shimozawa TA, Baba Y (1998b) The shape of wind-receptor hairs of cricket and cockroach. J Comp Physiol A 183: 187–192

    Article  Google Scholar 

  • Landolfa MA, Jacobs GA (1995) Direction sensitivity of the filiform hair population of the cricket cercal system. J Comp Physiol A 177: 759–766

    Google Scholar 

  • Magal C, Dangles O, Caparroy P, Casas J (2006) Hair canopy of cricket sensory system tuned to predator signals. J Theor Biol 241: 459–466

    Article  PubMed  Google Scholar 

  • Osborne L (1996) Signal processing in a mechanosensory array: dynamics of cricket cercal hairs. PhD thesis, University of California, Berkeley

    Google Scholar 

  • Shimozawa TA, Kanou M (1984a) Varieties of filiform hairs: range fractionation by sensory afferents and cercal interneurons of a cricket. J Comp Physiol A 155: 485–493

    Article  Google Scholar 

  • Shimozawa TA, Kanou M (1984b) The aerodynamics and sensory physiology of a range fractionation in the cercal filiform sensilla of the cricket Gryllus bimaculatus. J Comp Physiol A 155: 495–505

    Article  Google Scholar 

  • Shimozawa TA, Kumagai T, Baba Y (1998) Structural scaling and functional design of the cercal wind-receptor hairs of cricket. J Comp Physiol A 183: 171–186

    Article  Google Scholar 

  • Stokes GG (1851) On the effect of the internal friction of fluids on the motion of pendulums. Trans Cambridge Philos Soc 9: 8 ff (Reprinted in Mathematical and physical papers Vol. III, pp. 1–141, Cambridge University Press, 1901)

    Google Scholar 

  • Tautz J (1977) Reception of medium vibration by thoracal hairs of caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae). J Comp Physiol A 118: 13–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Cummins, B., Gedeon, T. (2012). Assessing the mechanical response of groups of arthropod filiform flow sensors. In: Frontiers in Sensing. Springer, Vienna. https://doi.org/10.1007/978-3-211-99749-9_16

Download citation

Publish with us

Policies and ethics