Skip to main content

Using Carbon Nanowalls as Templates

  • Chapter
  • First Online:

Abstract

Owing to the large surface area (high surface-to-volume ratio) of carbon nanowalls, we can expect a variety of applications using carbon nanowalls such as batteries, capacitors, and gas sensors. To this end, carbon nanowalls are decorated with nanoparticles or films of metals, semiconductors, and insulators, by using several techniques including vacuum evaporation, sputtering, CVD, and plating. Previously, Wu et al. used carbon nanowalls as templates to fabricate large surface-area materials, including Au, Cu, Zn, Ni, CoNiFe, Se, ZnO, TiO2, SiO x , SiN x , and AlO x [1–3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wu YH, Yang BJ, Zong BY, Sun H, Shen ZX, Feng YP (2004) Carbon nanowalls and related materials. J Mater Chem 14: 469–477

    Article  CAS  Google Scholar 

  2. Yang BJ, Wu YH, Zong BY, Shen ZX (2002) Electrochemical synthesis and characterization of magnetic nanoparticles on carbon nanowall templates. Nano Lett 2: 751–754

    Article  CAS  Google Scholar 

  3. Wu YH, Yang BJ, Han GC, Zong BY, Ni HQ, Luo P, Chong TC, Low TS, Shen ZX (2002) Fabrication of a class of nanostructured materials using carbon nanowalls as the templates. Adv Funct Mater 12: 489–494

    Article  CAS  Google Scholar 

  4. Hamaguchi S, Rossnagel SM (1996) Liner conformality in ionized magnetron sputter metal deposition processes. J Vac Sci Technol B 14: 2603–2608

    Article  CAS  Google Scholar 

  5. Lee J, Yang HJ, Lee JH, Kim JY, Nam WJ, Shin HJ, Ko YK, Lee JG, Lee EG, Kim CS (2006) Highly conformal deposition of pure Co films by MOCVD using Co2(CO)8 as a precursor. J Electrochem Soc 153: G539–G542

    Article  CAS  Google Scholar 

  6. Jin HJ, Shiratani M, Nakatake Y, Fukuzawa T, Kinoshita T, Watanabe Y, Toyofuku M (1999) Conformal deposition of high-purity copper using plasma reactor with H atom source. Jpn J Appl Phys 38: 4492–4495

    Article  CAS  Google Scholar 

  7. George SM, Ott AW, Klaus JW (1996) Surface chemistry for atomic layer growth. J Phys Chem 100: 13121–13131

    Article  CAS  Google Scholar 

  8. Ushizawa K, Sato Y, Mitsumori T, Machinami T, Ueda T, Ando T (2002) Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy. Chem Phys Lett 351: 105–108

    Article  CAS  Google Scholar 

  9. Yang W, Auciello O, Butler JE, Cai W, Carlisle JA, Gerbi JE, Gruen DM, Knickerbocker T, Lasseter TL, Russell JN, Smith LM, Hamers RJ (2002) DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nat Mater 1: 253–257

    Article  CAS  Google Scholar 

  10. Wenmackers S, Haenen K, Nesládek M, Wagner P, Michiels L, van de Ven M, Ameloot M (2003) Covalent immobilization of DNA on CVD diamond films. Phys Status Solidi 199: 44–48

    Article  CAS  Google Scholar 

  11. Takahashi K, Tanga M, Takai O, Okamura H (2003) DNA preservation using diamond chips. Diam Relat Mater 12: 572–576

    Article  CAS  Google Scholar 

  12. Hiramatsu M, Hori M (2006) Fabrication of carbon nanowalls using novel plasma processing. Jpn J Appl Phys 45: 5522–5527

    Article  CAS  Google Scholar 

  13. Chuang ATH, Robertson J, Boskovic BO, Koziol KKK (2007) Three-dimensional carbon nanowall structures. Appl Phys Lett 90: 123107-1–123107-3

    Google Scholar 

  14. Hou K, Outlaw RA, Wang S, Zhu MY, Quinlan RA, Manos DM, Kordesch ME, Arp U, Holloway BC (2008) Uniform and enhanced field emission from chromium oxide coated carbon nanosheets. Appl Phys Lett 92: 133112-1–133112-3

    Google Scholar 

  15. Lamy C, Leger JM, Srinivasan S (2001) Direct methanol fuel cells: from a twentieth century electrochemist’s dream to a twenty-first century emerging technology. In: Bockris JO’M, Conway BE, White RE (eds) Modern aspects of electrochemistry, Chapter 3, vol 34. Berlin, Springer, pp 53–118

    Chapter  Google Scholar 

  16. Liu Z, Ling XY, Su X, Lee JY (2004) Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B 108: 8234–8240

    Article  CAS  Google Scholar 

  17. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382: 54–56

    Article  CAS  Google Scholar 

  18. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes – the route toward applications. Science 297: 787–792

    Article  CAS  Google Scholar 

  19. Matsumoto T, Komatsu T, Arai K, Yamazaki T, Kijima M, Shimizu H, Takasawa Y, Nakamura J (2004) Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chem Commun 7: 840–841

    Article  Google Scholar 

  20. Yoshitake T, Shimakawa Y, Kuroshima S, Kimura H, Ichihashi T, Kubo Y, Kasuya D, Takahashi K, Kokai F, Yudasaka M, Iijima S (2002) Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Phys B 323: 124–126

    Article  CAS  Google Scholar 

  21. Huang JE, Guo DJ, Yao YG, Li HL (2005) High dispersion and electrocatalytic properties of platinum nanoparticles on surface-oxidized single-walled carbon nanotubes. J Electroanal Chem 577: 93–97

    Article  CAS  Google Scholar 

  22. Mu Y, Liang H, Hu J, Jiang L, Wan L (2005) Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J Phys Chem B 109: 22212–22216

    Article  CAS  Google Scholar 

  23. Machino T, Takeuchi W, Kano H, Hiramatsu M, Hori M (2009) Synthesis of platinum nanoparticles on two-dimensional carbon nanostructures with an ultrahigh aspect ratio employing supercritical fluid chemical vapor deposition process. Appl Phys Exp 2: 025001-1–025001-3

    Article  Google Scholar 

  24. Cansell F, Aymonier C (2009) Design of functional nanostructured materials using supercritical fluids. J Supercrit Fluids 47: 508–516

    Article  CAS  Google Scholar 

  25. Liu ZM, Han BX (2009) Synthesis of carbon-nanotube composites using supercritical fluids and their potential applications. Adv Mater 21: 825–829

    Article  CAS  Google Scholar 

  26. Watkins JJ, McCarthy TJ (1995) Polymer/metal nanocomposite synthesis in supercritical CO2. Chem Mater 7: 1991–1994

    Article  CAS  Google Scholar 

  27. Lin Y, Cui X, Yen C, Wai CM (2005) Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. J Phys Chem B 109: 14410–14415

    Article  CAS  Google Scholar 

  28. Saquing CD, Kang D, Aindow M, Erkey C (2005) Investigation of the supercritical deposition of platinum nanoparticles into carbon aerogels. Microporous Mesoporous Mater 80: 11–23

    Article  CAS  Google Scholar 

  29. Zhang Y, Kang D, Saquing C, Aindow M, Erkey C (2005) Supported platinum nanoparticles by supercritical deposition. Ind Eng Chem Res 44: 4161–4164

    Article  CAS  Google Scholar 

  30. Zhang Y, Erkey C (2006) Preparation of supported metallic nanoparticles using supercritical fluids. J Supercrit Fluids 38: 252–267

    Article  CAS  Google Scholar 

  31. Bayrakceken A, Kitkamthorn U, Aindow M, Erkey C (2007) Decoration of multi-wall carbon nanotubes with platinum nanoparticles using supercritical deposition with thermodynamic control of metal loading. Scr Mater 56: 101–103

    Article  CAS  Google Scholar 

  32. Hiramatsu M, Machino T, Mase K, Hori M, Kano H (2010) Preparation of platinum nanoparticles on carbon nanostructures using metal-organic chemical fluid deposition employing supercritical carbon dioxide. J Nanosci Nanotechnol 10: 4023–4029

    Google Scholar 

  33. Kondo S, Hori M, Yamakawa K, Den S, Kano H, Hiramatsu M (2008) Highly reliable growth process of carbon nanowalls using radical injection plasma-enhanced chemical vapor deposition. J Vac Sci Technol B 26: 1294–1300

    Article  CAS  Google Scholar 

  34. Pitchon V, Fritz A (1999) The relation between surface state and reactivity in the DeNO X mechanism on platinum-based catalysts. J Catal 186: 64–74

    Article  CAS  Google Scholar 

  35. Hiramatsu M, Nagao H, Taniguchi M, Amano H, Ando Y, Hori M (2005) High-rate growth of films of dense, aligned double-walled carbon nanotubes using microwave plasma-enhanced chemical vapor deposition. Jpn J Appl Phys 44: L693–L695

    Article  CAS  Google Scholar 

  36. Hiramatsu M, Deguchi T, Nagao H, Hori M (2007) Aligned growth of single-walled and double-walled carbon nanotube films by control of catalyst preparation. Jpn J Appl Phys 46: L303–L306

    Article  CAS  Google Scholar 

  37. Ngo T, Brandt L, Williams RS, Kaesz HD (1993) Scanning tunneling microscopy study of platinum deposited on graphite by metalorganic chemical vapor deposition. Surf Sci 291: 411–417

    Article  CAS  Google Scholar 

  38. Erkey C (2009) Preparation of metallic supported nanoparticles and films using supercritical fluid deposition. J Supercritical Fluids 47: 517–522

    Article  CAS  Google Scholar 

  39. Kobayashi K, Tanimura M, Nakai H, Yoshimura A, Yoshimura H, Kojima K, Tachibana M (2007) Nanographite domains in carbon nanowalls. J Appl Phys 101: 094306-1–094306-4

    Article  Google Scholar 

  40. Kurita S, Yoshimura A, Kawamoto H, Uchida T, Kojima K, Tachibana M, Molina-Morales P, Nakai H (2005) Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition. J Appl Phys 97: 104320–1–104320-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mineo Hiramatsu .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag /Wien

About this chapter

Cite this chapter

Hiramatsu, M., Hori, M. (2010). Using Carbon Nanowalls as Templates. In: Carbon Nanowalls. Springer, Vienna. https://doi.org/10.1007/978-3-211-99718-5_7

Download citation

Publish with us

Policies and ethics