Skip to main content

Physics of Carbon Nanowalls

  • Chapter
  • First Online:
Carbon Nanowalls

Abstract

Carbon nanowalls are graphite nanostructures with edges comprised of stacked planar graphene sheets standing vertically on a substrate. The sheets form a wall structure with thicknesses in the range of a few nanometers to a few tens of nanometers, and with a high aspect ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shiji K, Hiramatsu M, Enomoto A, Nakamura M, Amano H, Hori M (2005) Vertical growth of carbon nanowalls using rf plasma-enhanced chemical vapor deposition. Diam Relat Mater 14: 831–834

    Google Scholar 

  2. Mori T, Hiramatsu M, Yamakawa K, Takeda K, Hori M (2008) Fabrication of carbon nanowalls using electron beam excited plasma-enhanced chemical vapor deposition. Diam Relat Mater 17: 1513–1517

    Article  CAS  Google Scholar 

  3. Kobayashi K, Tanimura M, Nakai H, Yoshimura A, Yoshimura H, Kojima K, Tachibana M (2007) Nanographite domains in carbon nanowalls. J Appl Phys 101: 094306-1–094306-4

    Article  Google Scholar 

  4. Takeuchi W, Takeda K, Hiramatsu M, Tokuda Y, Kano H, Kimura S, Sakata O, Tajiri H, Hori M (2010) Monolithic self-sustaining nanographene sheet grown using plasma-enhanced chemical vapor deposition. Phys Status Solidi 207: 139–143

    Article  CAS  Google Scholar 

  5. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143: 47–57

    Article  CAS  Google Scholar 

  6. Wada N, Gaczi PJ, Solin SA (1980) “Diamond-like” 3-fold coordinated amorphous carbon. J Non-Crystalline Solids 35–36: 543–548

    Article  Google Scholar 

  7. Nemanich RJ, Solin SA (1979) First- and second-order Raman scattering from finite-size crystals of graphite. Phys Rev B 20: 392–401

    Article  CAS  Google Scholar 

  8. Yu J, Zhang Q, Ahn J, Yoon SF, Rusli, Li YJ, Gan B, Chew K, Tan KH (2001) Field emission from patterned carbon nanotube emitters produced by microwave plasma chemical vapor deposition. Diam Relat Mater 10: 2157–2160

    Article  CAS  Google Scholar 

  9. Kurita S, Yoshimura A, Kawamoto H, Uchida T, Kojima K, Tachibana M, Molina-Morales P, Nakai H (2005) Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition. J Appl Phys 97: 104320-1–104320-5

    Article  Google Scholar 

  10. Ni ZH, Fan HM, Feng YP, Shen ZX, Yang BY, Wu YH (2006) Raman spectroscopic investigation of carbon nanowalls. J Chem Phys 124: 204703-1–204703-5

    Article  Google Scholar 

  11. Robinson IK, Tweet DJ (1992) Surface X-ray diffraction. Rep Prog Phys 55: 599–651

    Article  CAS  Google Scholar 

  12. Goto S, Ikeda N, K Inoue, H Kimura, M Yabashi (2004) SPring-8 Beamline Handbook, Ver. 3 (Japan Synchrotron Radiation Research Institute, Hyogo, Japan, 2004), p 48

    Google Scholar 

  13. Sharma A, Kyotani T, Tomita A (2000) Comparison of structural parameters of PF carbon from XRD and HRTEM techniques. Carbon 38: 1977–1984

    Article  CAS  Google Scholar 

  14. Chuang ATH, Robertson J, Boskovic BO, Koziol KKK (2007) Three-dimensional carbon nanowall structures. Appl Phys Lett 90: 123107-1–123107-3

    Google Scholar 

  15. Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holloway BC, Mammana VP (2004) Free-standing subnanometer graphite sheets. Appl Phys Lett 85: 1265–1267

    Article  CAS  Google Scholar 

  16. Hiramatsu M, Hori M (2006) Fabrication of carbon nanowalls using novel plasma processing. Jpn J Appl Phys 45: 5522–5527

    Article  CAS  Google Scholar 

  17. Shang NG, Au FCK, Meng XM, Lee CS, Bello I, Lee ST (2002) Uniform carbon nanoflake films and their field emissions. Chem Phys Lett 358: 187–191

    Article  CAS  Google Scholar 

  18. Obraztsov AN, Zakhidov Al A, Volkov AP, Lyashenko DA (2003) Non-classical electron field emission from carbon materials. Diam Relat Mater 12: 446–449

    Article  CAS  Google Scholar 

  19. Wu YH, Yang BJ, Zong BY, Sun H, Shen ZX, Feng YP (2004) Carbon nanowalls and related materials. J Mater Chem 14: 469–477

    Article  CAS  Google Scholar 

  20. Wang JJ, Zhu MY, Zhao X, Outlaw RA, Manos DM, Holloway BC, Park CH, Anderson T, Mammana VP (2004) Synthesis and field-emission testing of carbon nanoflake edge emitters. J Vac Sci Technol B 22: 1269–1272

    Article  CAS  Google Scholar 

  21. Srivastava SK, Shukla AK, Vankar VD, Kumar V (2005) Growth, structure and field emission characteristics of petal like carbon nano-structured thin films. Thin Solid Films 492: 124–130

    Article  CAS  Google Scholar 

  22. Wang JY, Ito T (2005) High-current-density electron emissions from nano-carbon films fabricated by high-power microwave-plasma chemical vapour deposition. Diam Relat Mater 14: 1469–1473

    Article  CAS  Google Scholar 

  23. Wang JY, Teraji T, Ito T (2005) Fabrication of wrinkled carbon nano-films with excellent field emission characteristics. Diam Relat Mater 14: 2074–2077

    Article  CAS  Google Scholar 

  24. Wang S, Wang JJ, Miraldo P, Zhu MY, Outlaw R, Hou K, Zhao X, Holloway BC, Manos D, Tyler T, Shenderova O, Ray M, Dalton J, McGuire G (2006) High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices. Appl Phys Lett 89: 183103-1–183103-3

    Google Scholar 

  25. Itoh T, Shimabukuro S, Kawamura S, Nonomura S (2006) Preparation and electron field emission of carbon nanowall by Cat-CVD. Thin Solid Films 501: 314–317

    Article  CAS  Google Scholar 

  26. Koeck FAM, Obraztsov AN, Nemanich RJ (2006) Electron emission microscopy of nano-crystal graphitic films as high current density electron sources. Diam Relat Mater 15: 875–879

    Article  CAS  Google Scholar 

  27. Hou K, Outlaw RA, Wang S, Zhu MY, Quinlan RA, Manos DM, Kordesch ME, Arp U, Holloway BC (2008) Uniform and enhanced field emission from chromium oxide coated carbon nanosheets. Appl Phys Lett 92: 133112-1–133112-3

    Article  Google Scholar 

  28. Malesevic A, Kemps R, Vanhulsel A, Chowdhury MP, Volodin A, Haesendonck CV (2008) Field emission from vertically aligned few-layer graphene. J Appl Phys 104: 084301-1–084301-5

    Article  Google Scholar 

  29. Machino T, Takeuchi W, Kano H, Hiramatsu M, Hori M (2009) Synthesis of platinum nanoparticles on two-dimensional carbon nanostructures with an ultrahigh aspect ratio employing supercritical fluid chemical vapor deposition process. Appl Phys Exp 2: 025001-1–025001-3

    Article  Google Scholar 

  30. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306: 666–669

    Article  CAS  Google Scholar 

  31. Geim AK, Novoselov KS (2007) The rise of Graphene. Nat Mater 6: 183–191

    Article  CAS  Google Scholar 

  32. Fang T, Konar A, Xing H, Jena D (2007) Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl Phys Lett 91: 092109-1–092109-3

    Article  Google Scholar 

  33. Zhou SY, Gweon GH, Fedorov AV, First PN, de Heer WA, Lee DH, Guinea F, Castro Neto AH, Lanzara A (2007) Substrate-induced bandgap opening in epitaxial graphene. Nat Mater 6: 770–775

    Article  CAS  Google Scholar 

  34. Takeuchi W, Ura M, Hiramatsu M, Tokuda Y, Kano H, Hori M (2008) Electrical conduction control of carbon nanowalls. Appl Phys Lett 92: 213103-1–213103-3

    Article  Google Scholar 

  35. Teii K, Shimada S, Nakashima M, Chuang ATH (2009) Synthesis and electrical characterization of n-type carbon nanowalls. J Appl Phys 106: 084303-1–084303-6

    Article  Google Scholar 

  36. Fujishima A, Einaga Y, Rao TN, Tryn DA (eds) (2004) Diamond electrochemistry. BKC Inc./Elsevier BV, Tokyo/Amsterdam, p 28

    Google Scholar 

  37. Luais E, Boujtita M, Gohier A, Tailleur A, Casimirius S, Djouadi MA, Granier A, Tessier PY (2009) Carbon nanowalls as material for electrochemical transducers. Appl Phys Lett 95: 014104-1–014104-3

    Article  Google Scholar 

  38. Giorgi L, Dikonimos Makris Th, Giorgi R, Lisi N, Salernitano E (2007) Electrochemical properties of carbon nanowalls synthesized by HF-CVD. Sens Actuators B 126: 144–152

    Article  Google Scholar 

  39. Tanaike O, Kitada N, Yoshimura H, Hatori H, Kojima K, Tachibana M (2009) Lithium insertion behavior of carbon nanowalls by dc plasma CVD and its heat-treatment effect. Solid State Ionics 180: 381–385

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mineo Hiramatsu .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag /Wien

About this chapter

Cite this chapter

Hiramatsu, M., Hori, M. (2010). Physics of Carbon Nanowalls. In: Carbon Nanowalls. Springer, Vienna. https://doi.org/10.1007/978-3-211-99718-5_3

Download citation

Publish with us

Policies and ethics