Skip to main content

Training der Hauptkomponenten der Leistungsfähigkeit – Trainingsmethoden und Trainingsberatung

  • Chapter
  • First Online:
Kompendium der Sportmedizin

Zusammenfassung

Da die Ausdauer diejenige Hauptkomponente der Leistungsfähigkeit darstellt, die für den Sportmediziner das größte Feld für trainingsrelevante Maßnahmen und Beratung bietet, wird ihr ein Großteil des folgenden Kapitels gewidmet. Dabei stehen insbesondere physiologische Akutreaktionen während der Belastung, die dadurch über spezifische Pfade der Signalgebung ausgelösten molekularen Prozesse und die mittel- und langfristigen Trainingsanpassungen (etwa des Skelettmuskels) im Mittelpunkt der Betrachtung und werden mit den durch Krafttraining ausgelösten Adaptionsprozessen verglichen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Antonutto G, Di Prampero PE (1995) The concept of lactate threshold. A short review. J Sports Med Phys Fitness 35(1): 6–12

    CAS  Google Scholar 

  • Astrand I, Astrand PO, Christensen EH, Hedman R (1960) Intermittent muscular work. Acta Physiol Scand 48: 448–453

    Article  CAS  PubMed  Google Scholar 

  • Azevedo LF, Dos Santos MR (2014) High-Intensity Intermittent Exercise Training for Cardiovascular Disease. J Nov Physiother 4: 199

    Google Scholar 

  • Bartlett JD, Joo CH, Jeong T-S, Louhelainen J, Cochran AJ, Gibala MJ, Gregson W, Close GL, Drust B, Morton JP (2012) Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol 112: 1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Beneke R, Böning D (2008) The limits of human performance. Essays Biochem 44: 11–25

    Article  CAS  PubMed  Google Scholar 

  • Billat LV (2001) Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med 31(1): 13–31

    CAS  PubMed  Google Scholar 

  • Brooks GA (2009) Cell-cell and intracellular lactate shuttles. J Physiol 587(23): 5591–5600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks GA, Fahey TD, Baldwin KM (2005) Exercise Physiology. Human Bioenergetics and Its Applications. New York: McGraw-Hill, p 197

    Google Scholar 

  • Bunc V, Ejem M, Kucera V, Moravec P (1992) Assessment of predispositions for endurance running from field tests. J Sports Sci 10(3): 237–42

    Article  CAS  PubMed  Google Scholar 

  • Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, MacDonald MJ, McGee SL, Gibala MJ (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586: 151–160

    Article  CAS  PubMed  Google Scholar 

  • Bye A, Tjonna AE, Stolen TO, Rosbjorgen REN, Wisloff U (2009) Transcriptional changes in blood after aerobic interval training in patients with the metabolic syndrome. Europ J Cardiovasc Prev Rehab 16(1): 47–52

    Article  Google Scholar 

  • Chapman RF (2013) The individual response to training and competition at altitude. Br J Sports Med 47 (Suppl 1): i40–44

    Article  Google Scholar 

  • Chapman RF, Stickford JL, Levine BD (2010) Altitude training considerations for the winter sport athlete. Exp Physiol 95(3): 411–421

    Article  PubMed  Google Scholar 

  • Christensen EH, Hedman R, Saltin B (1960) Intermittent and continuous running. Acta Physiol Scand 50: 269–286

    Article  CAS  PubMed  Google Scholar 

  • Christoulas K, Karamouzis M, Mandroukas K (2011) „Living high – training low” vs. „living high – training high”: erythropoietic responses and performance of adolescent cross-country skiers. J Sports Med Phys Fitness 51(1): 74–81

    CAS  PubMed  Google Scholar 

  • Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med 37: 737–763

    Article  PubMed  Google Scholar 

  • Coppoolse R, Schols AMWJ, Baarends EM, Mostert R, Akkermans MA, Janssen PP, Wouters EFM (1999) Interval versus continuous training in patients with severe COPD: a randomized clinical trial. Eur Respir J 14: 258–263

    Article  CAS  PubMed  Google Scholar 

  • Currie KD, Dubberley JB, McKelvie RS, MacDonald MJ (2013) Low-volume, high-intensity interval training in patients with coronary artery disease. Med Sci Sports Exerc 45(8): 1436–1442

    Article  PubMed  Google Scholar 

  • Daussin FN, Ponsot E, Dufour SP, Lonsdorfer-Wolf E, Doutreleau S, Geny B, Piquard F, Richard R (2007) Improvement of VO2max by cardiac output and oxygen extraction adaptation during intermittent versus continuous endurance training. Eur J Appl Physiol 101(3): 377–383

    Article  PubMed  Google Scholar 

  • Davis HA, Bassett J, Hughes P, Gass GC (1983) Anaerobic Threshold and Lactate Turnpoint. Eur J Appl Physiol Occup Physiol 50(3): 383–392

    Article  CAS  PubMed  Google Scholar 

  • De Marees H (2003) Sportphysiologie. Sportverlag Strauß, Köln

    Google Scholar 

  • Dudley GA, Tullson PC, Terjung RL (1987) Influence of mitochondrial content on the sensitivity of respiratory control. J Biol Chem 262: 9109–9114

    CAS  PubMed  Google Scholar 

  • Egan B, Zierath JB (2013) Exercise Metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metabol 17(5): 162–184

    Article  CAS  Google Scholar 

  • Eisenhut A, Zintl F (2009) Ausdauertraining. Grundlagen, Methoden, Trainingssteuerung. (7. Auflage). BLV Buchverlag, München

    Google Scholar 

  • Esteve-Lanao J, San Juan AF, Earnest CP, Foster C, Lucia A (2005) How do endurance runners actually train? Relationship with competition performance. Med Sci Sports Exerc 37(3): 496–504

    Article  PubMed  Google Scholar 

  • Folland JP, Williams AG (2007) The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med 37: 145–168

    Article  PubMed  Google Scholar 

  • Fudge BW, Pringle JS, Maxwell NS, Turner G, Ingham SA, Jones AM (2012) Altitude training for elite endurance performance: a 2012 update. Curr Sports Med Rep 11(3): 148–154

    Article  PubMed  Google Scholar 

  • Garvican-Lewis LA, Clark SA, Polglaze T, McFadden G, Gore CJ (2013) Ten days of simulated live high: train low altitude training increases Hb mass in elite water polo players. Br J Sports Med 47 (Suppl 1): i70–i73

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibala MJ, Little JP, van Essen M Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 575: 901–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibala MJ, Little JP, MacDonald MJ, Hawley JA (2012) Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol 590: 1077–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard O, Pluim BM (2013) Improving team-sport player‘s physical performance with altitude training: from beliefs to scientific evidence. Br J Sports Med 47 (Suppl 1): 2–3

    Article  Google Scholar 

  • Girard O, Amann M, Aughey R, Billaut F, Bishop DJ, Bourdon P, Buchheit M, Chapman R, D’Hooghe M, Garvican-Lewis LA, Gore CJ, Millet GP, Roach GD, Sargent C, Saunders PU, Schmidt W, Schumacher YO (2013) Position statement – altitude training for improving team-sport players‘ performance: current knowledge and unresolved issues. Br J Sports Med 47 (Suppl 1): i8–i16

    Article  PubMed  PubMed Central  Google Scholar 

  • Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J (2007) Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39: 665–671

    Article  PubMed  Google Scholar 

  • Helgerud J, Björgen S, Karlsen T, Husby VS, Steinshamn S, Richardson RS, Hoff J (2010) Hyperoxic interval training in chronic obstructive pulmonary disease patients with oxygen desaturation at peak exercise. Scand J Med Sci Sports 20(1): 170–176

    Article  Google Scholar 

  • Hermansen L, Stensvold I (1972) Production and removal of lactate during exercise in man. Acta Physiol Scand 86: 191–201

    Article  CAS  PubMed  Google Scholar 

  • Hinckson EA, Hamlin MJ, Wood MR, Hopkins WG (2007) Game performance and intermittent hypoxic training. Br J Sports Med 41(8): 537–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollmann W, Strüder HK (2009) Sportmedizin. Grundlagen für Arbeit, Training und Präventivmedizin, 5. Aufl. Schattauer, Stuttgart

    Google Scholar 

  • Hofmann P, Tschakert G (2011) Special needs to prescribe exercise intensity for scientific studies. Cardiol Res Pract, Article ID 209302, 10 pages; doi:10.4061/2011/209302

    Google Scholar 

  • Hofmann P, VonDuvillard SP, Seibert F-J, Pokan R, Wonisch M, LeMura LM, Schwaberger G (2001) target heart rate is dependent on heart rate performance curve deflection. Med Sci Sports Exerc 33(10): 1726–1731

    Article  CAS  PubMed  Google Scholar 

  • Hofmann P, Wonisch M, Pokan R (2009) Laktat-Leistungs-Diagnostik. In: Pokan R, Benzer W, Gabriel H, Hofmann P, Kunschitz E, Mayr K, Samitz G, Schindler K, Wonisch M (Hrsg) Kompendium der kardiologischen Prävention und Rehabilitation. Springer, Wien New York, S 225–246

    Chapter  Google Scholar 

  • Hood DA (2001) Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90: 1137–1157

    CAS  PubMed  Google Scholar 

  • Humberstone-Gough CE, Saunders PU, Bonetti DL, Stephens S, Bullock N, Anson JM, Gore CJ (2013) Comparison of live high: train low altitude and intermittent hypoxic exposure. J Sports Sci Med 12(3): 394–401

    PubMed  PubMed Central  Google Scholar 

  • Iellamo F, Manzi V, Caminiti G, Vitale C, Castagna C, Massaro M, Franchini A, Rosano G, Volterrani M (2013) Matched dose interval and continuous exercise training induce similar cardiorespiratory and metabolic adaptations in patients with heart failure. Int J Cardiol 167(6): 2561–2565

    Article  PubMed  Google Scholar 

  • Ilic MD, Ilic S, Lazarevic G, Kocic G, Pavlovic R, Stefanovic V (2009) Impact of the interval versus steady state exercise on nitric oxide production in patients with left ventricular dysfunction. Acta Cardiol 64(2): 219–224

    Article  PubMed  Google Scholar 

  • Karlsen T, Hoff J, Stoylen A, Cappelen Skovholdt M, Gulbrandsen Aarhus K, Helgerud J (2008) Aerobic interval training improves VO2peak in coronary artery disease patients; no additional effect from hyperoxia. Scand Cardiovasc J 42: 303–309

    Article  PubMed  Google Scholar 

  • Kayser B (2003) Exercise starts and ends in the brain. Eur J Appl Physiol 90(3–4): 411–419

    Article  PubMed  Google Scholar 

  • Keteyian SJ (2012) Swing and a miss or inside the park home run: which fate awaits high intensity exercise training? Circulation 126(12): 1431–1433

    Article  PubMed  Google Scholar 

  • Kilpatrick MW, Greeley SJ (2014) Exertional responses to sprint interval training: a comparison of 30-sec. and 60-sec. conditions. Psychol Rep 114(3): 854–865

    Article  PubMed  Google Scholar 

  • Knechtle B, Enggist A, Jehle T (2005) Energy turnover at the Race Across America (RAAM) – a case report. Int J Sports Med 26(6): 499–503

    Article  CAS  PubMed  Google Scholar 

  • Koufaki P, Mercer TH, George KP, Nolan J (2014) Low-volume high-intensity interval training vs continuous aerobic cycling in patients with chronic heart failure: a pragmatic randomised clinical trial of feasibility and effectiveness. J Rehabil Med 46(4): 348–56

    Article  PubMed  Google Scholar 

  • Laursen PB, Jenkins DG (2002) The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med 32(1): 53–73

    Article  PubMed  Google Scholar 

  • Leblanc PJ, Howarth KR, Gibala MJ, Heigenhauser GJ (2004) Effects of 7 wk of endurance training on human skeletal muscle metabolism during submaximal exercise. J Appl Physiol 97: 2148–2153

    Article  CAS  PubMed  Google Scholar 

  • Lundby C, Millet GP, Calbet JA, Bärtsch P, Subudhi AW (2012) Does ,altitude training‘ increase exercise performance in elite athletes? Br J Sports Med 46(11): 792–795

    Article  PubMed  Google Scholar 

  • Macaluso A, De Vito G (2004) Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol 91: 450–472

    Article  PubMed  Google Scholar 

  • MacDougall D, Sale D (1981) Continuous vs. interval training: a review for the athlete and the coach. Can J Appl Sport 6(2): 93–97

    CAS  Google Scholar 

  • Meyer K, Samek L, Schwaibold M, Westbrook S, Hajric R, Beneke R, Lehmann M, Roskamm H (1997) Interval training in patients with severe chronic heart failure – analysis and recommendation for exercise procedures. Med Sci Sports Exerc 29(3): 306–312

    Article  CAS  PubMed  Google Scholar 

  • Millet GP, Faiss R, Brocherie F, Girard O (2013) Hypoxic training and team sports: a challenge to traditional methods? Br J Sports Med 47 (Suppl 1): 6–7

    Article  Google Scholar 

  • Mognoni P, Lafortuna C, Russo G, Minetti A (1982) An analysis of world records in three types of locomotion. Eur J Appl Physiol Occup Physiol 49(3): 287–299

    Article  CAS  PubMed  Google Scholar 

  • Nevill AM, Whyte GP, Holder RL, Peyrebrune M (2007) Are there limits to swimming world records? Int J Sports Med 28(12): 1012–1017

    Article  CAS  PubMed  Google Scholar 

  • Nevill AM, Whyte G (2005) Are there limits to running world records? Med Sci Sports Exerc 37(10): 1785–1788

    Article  PubMed  Google Scholar 

  • Nilsson BB, Hellesnes B, Westheim A, Risberg MA (2008) Group-based aerobic interval training in patients with chronic heart failure: Norwegian Ullevaal Model. Phys Ther 88(4): 523–535

    Article  PubMed  Google Scholar 

  • Noakes TD (2006) The limits of endurance exercise. Basic Res Cardiol 101(5): 408–417

    Article  PubMed  Google Scholar 

  • Noakes TD (2007) The limits of human endurance: what is the greatest endurance performance of all time? Which factors regulate performance at extreme altitude? Adv Exp Med Biol 618: 255–276

    Article  PubMed  Google Scholar 

  • Ofner M, Wonisch M, Frei M, Tschakert G, Domej W, Kröpfl J, Hofmann P (2014) Influence of acute normobaric hypoxia on physiological variables and lactate turn point determination in trained men. J Sports Sci Med 13(4): 774–781

    PubMed  PubMed Central  Google Scholar 

  • Osawa Y, Azuma K, Tabata S, Katsukawa F, Ishida H, Oguma Y, Kawai T, Itoh H, Okuda S, Matsumoto H (2014) Effects of 16-week high-intensity interval training using upper and lower body ergometers on aerobic fitness and morphological changes in healthy men: a preliminary study. Open Access J Sports Med 4(5): 257–265

    Article  Google Scholar 

  • Philp A, Hamilton DL, Baar K (2011) Signals mediating skeletal muscle remodeling by resistance exercise: PI3-kinase independent activation of mTORC1. J Appl Physiol 110: 561–568

    Article  CAS  PubMed  Google Scholar 

  • Platonov VN (1999) Belastung – Ermüdung – Leistung. Der moderne Trainingsaufbau. Trainerbibliothek 34. Philippka Sportverlag, Münster

    Google Scholar 

  • Rennie MJ, Wackerhage H, Spangenburg EE, Booth FW (2004) Control of the size of the human muscle mass. Annu Rev Physiol 66: 799–828

    Article  CAS  PubMed  Google Scholar 

  • Richalet JP, Gore CJ (2008) Live and/or sleep high: train low, using normobaric hypoxia. Scand J Med Sci Sports 18 (Suppl 1): 29–37

    Article  PubMed  Google Scholar 

  • Rognmo O, Hetland E, Helgerud J, Hoff J, Slordahl SA (2004) High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil 11: 216–222

    Article  PubMed  Google Scholar 

  • Rognmo O, Moholdt T, Bakken H, Hole T, Molstad P, Myhr NE, Grimsmo J, Wisloff U (2012) Cardiovascular risk of high- versus moderate-intensity aerobic exercise in coronary heart disease patients. Circulation 126(12): 1436–1440

    Article  PubMed  Google Scholar 

  • Sabapathy S, Kingsley RA, Schneider DA, Adams L, Morris NR (2004) Continuous and intermittent exercise responses in individuals with chronic obstructive pulmonary disease. Thorax 59: 1026–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saltin B, Essen B, Pedersen PK (1976) Intermittent exercise: its physiology and some practical applications. Med Sport 9: 23–51

    CAS  Google Scholar 

  • Sandri M (2008) Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 23: 160–170

    Article  CAS  Google Scholar 

  • Scharhag-Rosenberger F, Meyer T, Gäßler N, Faude O, Kindermann W (2010) Exercise at given percentages of VO2max: Heterogeneous metabolic responses between individuals. J Sci Med Sport 13(1): 74–79

    Article  PubMed  Google Scholar 

  • Schjerve IE, Tyldum GA, Tjonna AE, Stolen T, Loennechen JP, Hansen HEM, Haram PM, Heinrichs G, Bye A, Najjars SM, Smith GL, Slordahl SA, Kemi OJ, Wisloff U (2008) Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clin Sci 115: 283–293

    Article  PubMed  Google Scholar 

  • Seene T, Kaasik P, Alev K (2011) Muscle protein turnover in endurance training: a review. Int J Sports Med 32(12): 905–911

    Article  CAS  PubMed  Google Scholar 

  • Seiler S, Hetlelid KJ (2005) The impact of rest duration on work intensity and RPE during interval training. Med Sci Sports Exerc 37: 1601–1607

    Article  PubMed  Google Scholar 

  • Skinner JS, McLellan TH (1980) The Transition from Aerobic to Anaerobic Metabolism. Res Q Exerc Sport 51(1): 234–248

    Article  CAS  PubMed  Google Scholar 

  • Slordahl SA, Wang E, Hoff J, Kemi OJ, Amundsen BH, Helgerud J (2005) Effective training for patients with intermittent claudication. Scand Cardiovasc J 39: 244–249

    Article  PubMed  Google Scholar 

  • Smart NA, Dieberg G, Giallauria F (2013) Intermittent versus continuous exercise training in chronic heart failure: A meta-analysis. Int J Cardiol 166(2): 352–358

    Article  PubMed  Google Scholar 

  • Stray-Gundersen J, Levine BD (2008) Live high, train low at natural altitude. Scand J Med Sci Sports Aug; 18 (Suppl 1): 21–28

    Article  Google Scholar 

  • Talanian JL, Holloway GP, Snook LA, Heigenhauser GJ, Bonen A, Spriet LL (2010) Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle. Am J Physiol Endocrinol Metab 299: 180–188

    Google Scholar 

  • Tjonna AE, Lee SJ, Rognmo O, Stolen TO, Bye A, Haram PM, Loennechen JP, Al-Share QY, Skogvoll E, Slordahl SA, Kemi OJ, Najjar SM, Wisloff U (2008) Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation 118: 346–354

    Article  PubMed  PubMed Central  Google Scholar 

  • Trapp EG, Chisholm DJ, Freund J, Botcher SH (2008) The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int J Obes 32: 684–691

    Article  CAS  Google Scholar 

  • Tschakert G, Hofmann P (2013) High-intensity intermittent exercise: methodological and physiological aspects. Int J Sports Physiol Perform 8(6): 600–610

    Article  PubMed  Google Scholar 

  • Tschakert G, Kroepfl J, Mueller A, Moser O, Groeschl W, Hofmann P (2015) How to regulate the acute physiological response to „aerobic“ high-intensity interval exercise. J Sport Sci Med 14: 29–36

    Google Scholar 

  • Tyldum GA, Schjerve IE, Tjonna AE, Kirkeby-Garstad I, Stolen TO, Richardson RS, Wisloff U (2009) Endothel dysfunction induced by post-prandial lipemia: complete protection afforded by high-intensity aerobic interval exercise. J Am Coll Cardiol 53(2): 200–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogiatzis I, Terzis G, Nanas S, Stratakos G, Simoes DCM, Georgiadou O, Zakynthinos S, Roussos C (2005) Skeletal muscle adaptations to interval training in patients with advanced COPD. Chest 128: 3838–3845

    Article  PubMed  Google Scholar 

  • vonDuvillard SP, Hofmann P, Schwaberger G, Pokan R et al. (2001) Metabolic changes resulting from a series of consecutive supra-maximal laboratory tests in competitive alpine ski racers. In: Müller E, Schwameder H, Raschner C, Lindinger S, Kornexl E (eds) Science and Skiing II. Schriftenreihe Schriften zur Sportwissenschaft Bd. 26, Verlag Dr. Kovac, Hamburg, S 469–479

    Google Scholar 

  • Wachsmuth NB, Völzke C, Prommer N, Schmidt-Trucksäss A, Frese F, Spahl O, Eastwood A, Stray-Gundersen J, Schmidt W (2013) The effects of classic altitude training on hemoglobin mass in swimmers. Eur J Appl Physio 113(5): 1199–1211

    Article  CAS  Google Scholar 

  • Wahl P, Mathes S, Achtzehn S, Bloch W, Mester J (2014) Active vs. passive recovery during high-intensity training influences hormonal response. Int J Sports Med 35: 583–589

    CAS  PubMed  Google Scholar 

  • Wallner D, Simi H, Tschakert G, Hofmann P (2013) Acute physiological response to aerobic short interval training in trained runners. Int J Sports Physiol Perform 9(4): 661–666

    Article  PubMed  Google Scholar 

  • Warburton DER, McKenzie DC, Haykowsky MJ, Taylor A, Shoemaker P, Ignaszewski AP, Chan SY (2005) Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am J Cardiol 95: 1080–1084

    Article  PubMed  Google Scholar 

  • Wassermann K, Hansen JE, Sue DY, Stringer WW, Sietsema KE, Sun X-G, Whipp BJ (2012) Principles of Exercise Testing and Interpretation. Including Pathophysiology and clinical Applications. Lippincott Williams & Wilkins/Wolters Kluwer, Philadelphia

    Google Scholar 

  • Weineck J (2010) Optimales Training. Leistungsphysiologische Trainingslehre unter besonderer Berücksichtigung des Kinder- und Jugendtrainings, 16. Aufl. Perimed Spitta, Erlangen

    Google Scholar 

  • Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, Tjonna AE, Helgerud J, Slordahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingson O, Skjaerpe T (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115: 3086–3094

    Article  PubMed  Google Scholar 

  • Wonisch M, Hofmann P, Fruhwald FM, Kraxner W, Hödl R, Pokan R, Klein W (2003) Influence of beta-blocker use on percentage of target heart rate exercise prescription. Eur J Cardiovasc Prev Rehab 10(4): 296–301

    Article  Google Scholar 

  • Wonisch M, Hofmann P, Schmid P, Pokan R (2007) Zusammenhang zwischen „anaerober Schwelle“, Katecholaminen und Arrhythmien bei Patienten mit Herzerkrankungen. Öster J Sportmed 2: 6–12

    Google Scholar 

Weiterführende Literatur

  • Harre D (Hrsg) (1979) Trainingslehre. Einführung in die Theorie und Methodik des sportlichen Trainings. Sportverlag, Berlin

    Google Scholar 

  • Komi PV (ed) (1993) Strength and Power in Sport. Volume III of the Encyclopaedia of Sports Medicine. An IOC Medical Commission Publication. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Kreider RB, Fry AC, O’Toole ML (eds) (1998) Overtraining in Sport. Human Kinetics, Champaign, Il

    Google Scholar 

  • Lehmann M, Foster C, Gastmann U, Keizer H, Steinacker JM (eds) (1999) Overload, Performance Incompetence, and Regeneration in Sport. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Matwejew LP (1981) Grundlagen des sportlichen Trainings. Sportverlag, Berlin

    Google Scholar 

  • Schnabel G, Harre D, Borde A (Hrsg) (1994) Trainingswissenschaft. Leistung – Training – Wettkampf. Sportverlag, Berlin

    Google Scholar 

  • Shephard RJ, Astrand P-O (eds) (1993) Endurance in Sport. Volume II of the Encyclopaedia of Sports Medicine. An IOC Medical Commission Publication. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Steinacker JM, Ward SA (eds) (1996) The Physiology and Pathophysiology of Exercise Tolerance. Plenum Press, New York

    Google Scholar 

  • Verchoshanskij J (1992) Ein neues Trainingssystem für zyklische Sportarten. Ein neuer Weg der Gestaltung und Programmierung des Trainingsprozesses. Trainerbibliothek 29. Philippka Verlag, Münster

    Google Scholar 

  • Viru A, Viru M (2001) Biochemical Monitoring of Sport Training. Human Kinetics, Champaign, Il

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Tschakert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Austria

About this chapter

Cite this chapter

Tschakert, G., Müller, A., Hofmann, P. (2017). Training der Hauptkomponenten der Leistungsfähigkeit – Trainingsmethoden und Trainingsberatung. In: Wonisch, M., Hofmann, P., Förster, H., Hörtnagl, H., Ledl-Kurkowski, E., Pokan, R. (eds) Kompendium der Sportmedizin. Springer, Vienna. https://doi.org/10.1007/978-3-211-99716-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99716-1_16

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99715-4

  • Online ISBN: 978-3-211-99716-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics