Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 515))

  • 610 Accesses

Abstract

In this chapter we provide an overview of the basic equations governing the mechanical response of rubberlike materials capable of finite deformations. We use the term rubberlike materials to refer to highly deformable, nonlinear elastic continua, which respond differently in their reference state and their deformed configuration. An elastic material, by definition, will always return to its original state after the application and removal of forces. Nonlinear elastic materials, in particular, exhibit a change of material behavior during deformation, but assume the original shape after removal of all applied forces. Therefore, we do not include the effects of time and rate dependence, nor do we assume that the applied forces are of such magnitude to induce damage to the material.

We first introduce the mathematics of deformation and different stress tensors for the analysis of rubberlike materials. Subsequently, we summarize the general constitutive theory and specialize its use to isotropic compressible and incompressible materials. A large number of constitutive functions are available in the literature to describe the nonlinear elastic response. We provide an overview of the most frequently used formulations.

The last section of this chapter covers the solution of some boundary value problems. In particular, we consider incompressible, isotropic and elastic materials to illustrate the mechanical response when different strain energy functions are used. We apply the theories to circular, cylindrical thick-walled tubes subjected first to a pure azimuthal shear deformation, followed by combined axial extension and radial inflation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Arruda, E. M. and Bocye, M. C. (1993). A 3-dimensional constitutive model for the large stretch behavior of rubber elastic-materials. Journal of the Mechanics and Physics of Solids, 41:389–412.

    Article  Google Scholar 

  • Blatz, P. J. and Ko, W. L. (1962). Application of finite elastic theory to the deformation of rubbery materials. Transactions of the Society of Rheology, 6:223–251.

    Article  Google Scholar 

  • Bose, K. and Dorfmann, A. (2009). Computational aspects of a pseudo-elastic constitutive model for muscle properties in a soft-bodied arthropod. International Journal of Non-Linear Mechanics, 44:42–50.

    Article  Google Scholar 

  • Bustamante, R., Dorfmann, A., and Ogden, R. W. (2008). On variational formulations in nonlinear magnetoelastostatics. Mathematics and Mechanics of Solids, 13:725–745.

    Article  MATH  MathSciNet  Google Scholar 

  • Bustamante, R., Dorfmann, A., and Ogden, R. W. (2009). Nonlinear electroelastostatics: A variational framework. Zeitschrift fur Angewandte Mathematik und Physik, 60:154–177.

    Article  MATH  MathSciNet  Google Scholar 

  • Carroll, M. M. (1988). Finite strain solutions in compressible isotropic elasticity. Journal of Elasticity, 20:65–92.

    Article  MATH  Google Scholar 

  • Dorfmann, A. and Ogden, R. W. (2003a). Magnetoelastic modelling of elastomers. European Journal of Mechanics A-Solids, 22:497–507.

    Article  MATH  MathSciNet  Google Scholar 

  • Dorfmann, A. and Ogden, R. W. (2003b). A pseudo-elastic model for loading, partial unloading and reloading of particle-reinforced rubber. International Journal of Solids and Structures, 40:2699–2714.

    Article  MATH  Google Scholar 

  • Dorfmann, A. and Ogden, R. W. (2004a). A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. International Journal of Solids and Structures, 41:1855–1878.

    Article  MATH  Google Scholar 

  • Dorfmann, A. and Ogden, R. W. (2004b). Nonlinear magnetoelastic deformations. Quarterly Journal of Mechanics and Applied Mathematics, 57:599–622.

    Article  MATH  MathSciNet  Google Scholar 

  • Dorfmann, A. and Ogden, R. W. (2004c). Nonlinear magnetoelastic deformations of elastomers. Acta Mechanica, 167:13–28.

    Article  MATH  Google Scholar 

  • Dorfmann, A. and Ogden, R. W. (2005). Nonlinear electroelasticity. Acta Mechanica, 174:167–183.

    Article  MATH  Google Scholar 

  • Dorfmann, A., Trimmer, B. A., and Woods, W. A. (2007). A constitutive model for muscle properties in a soft-bodied arthropod. Journal of the Royal Society Interface, 4:257–269.

    Article  Google Scholar 

  • Dorfmann, A. L., Woods, W. A., and Trimmer, B. A. (2008). Muscle performance in a soft-bodied terrestrial crawler: Constitutive modelling of strain-rate dependency. Journal of the Royal Society Interface, 5:349–362.

    Article  Google Scholar 

  • Franceschini, G., Bigoni, D., Regitnig, P., and Holzapfel, G. A. (2006). Brain tissue deforms similarly to filled elastomers and follows consolidation theory. Journal of the Mechanics and Physics of Solids, 54:2592–2620.

    Article  MATH  Google Scholar 

  • Fung, Y. C. (1993). Biomechanics: Mechanical Properties of Living Tissues. Springer.

    Google Scholar 

  • Fung, Y. C. B. (1967). Elasticity of soft tissues in simple elongation. American Journal of Physiology, 213:1532–1544.

    Google Scholar 

  • Gent, A. N. (1996). A new constitutive relation for rubber. Rubber Chemistry and Technology, 69:59–61.

    MathSciNet  Google Scholar 

  • Haughton, D. M. (1987). Inflation and bifurcation of thick-walled compressible elastic spherical-shells. IMA Journal of Applied Mathematics, 39:259–272.

    Article  MATH  MathSciNet  Google Scholar 

  • Haughton, D. M. and Ogden, R. W. (1979a). Bifurcation of inflated circular-cylinders of elastic-material under axial loading-I. Membrane theory for thinwalled tubes. Journal of the Mechanics and Physics of Solids, 27:179–212.

    Article  MATH  MathSciNet  Google Scholar 

  • Haughton, D. M. and Ogden, R. W. (1979b). Bifurcation of inflated circular-cylinders of elastic-material under axial loading-II. Exact theory for thick-walled tubes. Journal of the Mechanics and Physics of Solids, 27:489–512.

    Article  MATH  MathSciNet  Google Scholar 

  • Holzapfel, G. A. (2000). Nonlinear Solid Mechanics. John Wiley & Sons.

    Google Scholar 

  • Holzapfel, G. A. and Gasser, T. C. (2001). A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications. Computer Methods in Applied Mechanics and Engineering, 190:4379–4403.

    Article  Google Scholar 

  • Holzapfel, G. A., Gasser, T. C., and Ogden, R. W. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity, 61:1–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Holzapfel, G. A., Gasser, T. C., and Stadler, M. (2002). A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis. European Journal of Mechanics A-Solids, 2:441–463.

    Article  Google Scholar 

  • Horgan, C. O. and Saccomandi, G. (2001). Pure azimuthal shear of isotropic, incompressible hyperelastic materials with limiting chain extensibility. International Journal of Non-Linear Mechanics, 36:465–475.

    Article  MATH  Google Scholar 

  • Humphrey, J. D. (2001). Cardiovascular Solid Mechanics. Springer.

    Google Scholar 

  • Humphrey, J. D. (2003). Review paper: Continuum biomechanics of soft biological tissues. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 459:3–46.

    Article  MATH  MathSciNet  Google Scholar 

  • Hunter, P. J., McCulloch, A. D., and ter Keurs, H. E. D. J. (1998). Modelling the mechanical properties of cardiac muscle. Progress in Biophysics & Molecular Biology, 69:289–331.

    Article  Google Scholar 

  • Jiang, X. and Ogden, R. W. (1998). On azimuthal shear of a circular cylindrical tube of compressible elastic material. Quarterly Journal of Mechanics and Applied Mathematics, 51:143–158.

    Article  MATH  MathSciNet  Google Scholar 

  • Knowles, J. K. (1977). The finite anti-plane shear field near tip of a crack for a class of incompressible elastic solids. International Journal of Fracture, 13:611–639.

    Article  MathSciNet  Google Scholar 

  • Ogden, R. W. (1972a). Large deformation isotropic elasticity — correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 326:565–584.

    Article  MATH  Google Scholar 

  • Ogden, R. W. (1972b). Large deformation isotropic elasticity — on the correlation of theory and experiment for compressible rubberlike solids. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 328:567–583.

    Article  MATH  Google Scholar 

  • Ogden, R. W. (1997). Non-Linear Elastic Deformations. Dover Publications.

    Google Scholar 

  • Ogden, R. W. and Roxburgh, D. G. (1999). A pseudo-elastic model for the Mullins effect in filled rubber. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 455:2861–2877.

    Article  MATH  MathSciNet  Google Scholar 

  • Reese, S. and Govindjee, S. (1998). A theory of finite viscoelasticity and numerical aspects. International Journal of Solids and Structures, 35:3455–3482.

    Article  MATH  Google Scholar 

  • Spencer, A. J. M. (1971). Theory of invariants. In Eringen, A. C., editor, Continuum Physics, Vol. 1. Academic Press, New York.

    Google Scholar 

  • Tong, P. and Fung, Y. C. (1976). Stress-strain relationship for skin. Journal of Biomechanics, 9:649–657.

    Article  Google Scholar 

  • Treloar, L. R. G. (1975). The Physics of Rubber Elasticity. Oxford University Press.

    Google Scholar 

  • Truesdell, C. and Noll, W. (1965). The Non-Linear Field Theories of Mechanics. Springer.

    Google Scholar 

  • Twizell, E. H. and Ogden, R. W. (1983). Non-linear optimization of the material constants in Ogden stress-deformation function for incompressible isotropic elastic-materials. Journal of the Australian Mathematical Society B-Applied Mathematics, 24:424–434.

    Article  MATH  MathSciNet  Google Scholar 

  • Varga, O. H. (1966). Stress-strain behavior of elastic materials, selected problems of large deformations. Wiley-Intersience.

    Google Scholar 

  • Zheng, Q. S. and Spencer, A. J. M. (1993). Tensors which characterize anisotropies. International Journal of Engineering Science, 31:679–693.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 CISM, Udine

About this chapter

Cite this chapter

Dorfmann, A.L. (2009). Modeling of Rubberlike Materials. In: Klepaczko, J.R., Łodygowski, T. (eds) Advances in Constitutive Relations Applied in Computer Codes. CISM International Centre for Mechanical Sciences, vol 515. Springer, Vienna. https://doi.org/10.1007/978-3-211-99709-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99709-3_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99708-6

  • Online ISBN: 978-3-211-99709-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics