Skip to main content

A 3-D brick Cosserat Point Element (CPE) for nonlinear elasticity

  • Chapter
Computational and Experimental Mechanics of Advanced Materials

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 514))

Abstract

A nonlinear hyperelastic elastic material has one of the simplest constitutive equations because the stress response is determined algebraically by derivatives of a strain energy function. However, the nonlinear partial differential equations which describe the deformation of an elastic material are intractable analytically for most problems. Therefore, numerical methods are essential to obtain solutions of realistic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • ABAQUS. Inc., Version 6.5-1, Providence RI 02909-2499.

    Google Scholar 

  • ADINA. Inc., Version 8.3.1, Watertown MA 02472.

    Google Scholar 

  • ANSYS. Inc., University Advanced Version 9 Canonsburg, PA 15317.

    Google Scholar 

  • T. Belytschko, J.S.J. Ong, W.K. Liu, and J.M. Kennedy. Hourglass control in linear and nonlinear problems. Comp. Meth. Appl. Mech. Engrg., 43: 251–276, 1984.

    Article  MATH  Google Scholar 

  • E.F.I. Boerner, S. Loehnert, and P. Wriggers. A new finite element based on the theory of a Cosserat point — extension to initially distorted elements for 2D plane strain. Int. J. Numer. Meth. Engng., 71:454–472, 2007.

    Article  MathSciNet  Google Scholar 

  • FEAP. — A Finite Element Analysis Program, Version 7.5, University of California, Berkeley.

    Google Scholar 

  • P. Flory. Thermodynamic relations for high elastic materials. Trans. Faraday Soc., 57:829–838, 1961.

    Article  MathSciNet  Google Scholar 

  • R. Hutter, P. Hora, and P. Niederer. Total hourglass control for hyperelastic materials. Comp. Meth. Appl. Mech. Engrg., 189:991–1010, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Jabareen and M.B. Rubin. Hyperelasticity and physical shear buckling of a block predicted by the Cosserat point element compared with inelasticity and hourglassing predicted by other element formulations. Computational Mechanics., 40:447–459, 2007a.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Jabareen and M.B. Rubin. An improved 3-D Cosserat brick element for irregular shaped elements. Computational Mechanics., 40:979–1004, 2007b.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Jabareen and M.B. Rubin. Modified torsion coefficients for a 3-D brick Cosserat point element. Computational Mechanics., 41:517–525, 2007c.

    Article  MathSciNet  Google Scholar 

  • M. Jabareen and M.B. Rubin. A generalized Cosserat point element (CPE) for isotropic nonlinear elastic materials including irregular 3-D brick and thin structures. Journal of Mechanics of Materials and Structure, 3 (8): 1465–1498, 2008a.

    Article  Google Scholar 

  • M. Jabareen and M.B. Rubin. A Cosserat point element (CPE) for nearly planar problems (including thickness changes) in nonlinear elasticity. International Journal for Engineering Science., 46 (10):989–1010, 2008b.

    MathSciNet  Google Scholar 

  • S. Loehnert, E.F.I. Boerner, M.B. Rubin, and P. Wriggers. Response of a nonlinear elastic general Cosserat brick element in simulations typically exhibiting locking and hourglassing. Computational Mechanics., 36:255–265, 2005.

    Article  MATH  Google Scholar 

  • B. Nadler and M.B. Rubin. A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point. Int. J. Solids and Structures., 40: 4585–4614, 2003.

    Article  MATH  Google Scholar 

  • P.M. Naghdi and M.B. Rubin. Restrictions on nonlinear constitutive equations for elastic shells. J. Elasticity., 39:133–163, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  • S. Reese and P. Wriggers. Finite element calculation of the stability behaviour of hyperelastic solids with the enhanced strain methods. Zeitschrift fur angewandte Mathematik und Mechanik., 76:415–416, 1996.

    MATH  Google Scholar 

  • S. Reese and P. Wriggers. A stabilization technique to avoid hourglassing in finite elasticity. Int. J. Numer. Meth. Engng., 48:79–109, 2000.

    Article  MATH  Google Scholar 

  • S. Reese, P. Wriggers, and B.D. Reddy. A new locking free brick element technique for large deformation problems in elasticity. Computers and Structures., 75:291–304, 2000.

    Article  MathSciNet  Google Scholar 

  • M.B. Rubin. On the theory of a Cosserat point and its application to the numerical solution of continuum problems. J. Appl. Mech., 52:368–372, 1985a.

    Article  MATH  Google Scholar 

  • M.B. Rubin. On the numerical solution of one-dimensional continuum problems using the theory of a Cosserat point. J. Appl. Mech., 52:373–378, 1985b.

    Article  MATH  Google Scholar 

  • M.B. Rubin. Numerical solution of two-and three-dimensional thermomechanical problems using the theory of a Cosserat point. J. of Math. and Physics (ZAMP)., 46, Special Issue, S308–S334. In Theoretical, Experimental, And Numerical Contributions To The Mechanics Of Fluids And Solids, Edited by J Casey and MJ Crochet, Brikhauser Verlag, Basel (1995), 1995.

    Google Scholar 

  • M.B. Rubin. Restrictions on nonlinear constitutive equations for elastic rods. J. Elasticity., 44:9–36, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • M.B. Rubin. Cosserat Theories: Shells, Rods and Points. Solid Mechanics and its Applications, Vol. 79. Kluwer, 2000.

    Google Scholar 

  • M.B. Rubin. Numerical solution procedures for nonlinear elastic rods using the theory of a Cosserat point. Int. J. Solids Structures., 38:4395–4437, 2001.

    Article  MATH  Google Scholar 

  • J.C. Simo and F. Armero. Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int. J. Numer. Meth. Engng., 33:1413–1449, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • J.C. Simo and M.S. Rifai. A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Meth. Engng., 29: 1595–1638, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • J.C. Simo, F. Armero, and R.L. Taylor. Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comp. Meth. Appl. Mech. Engrg., 110:359–386, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  • I.S. Sokolnikoff. Mathematical Theory of Elasticity. McGraw-Hill, 1956.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 CISM, Udine

About this chapter

Cite this chapter

Jabareen, M., Rubin, M.B. (2010). A 3-D brick Cosserat Point Element (CPE) for nonlinear elasticity. In: Silberschmidt, V.V. (eds) Computational and Experimental Mechanics of Advanced Materials. CISM International Centre for Mechanical Sciences, vol 514. Springer, Vienna. https://doi.org/10.1007/978-3-211-99685-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99685-0_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99684-3

  • Online ISBN: 978-3-211-99685-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics