Skip to main content

Abstract

Resin glycosides are part of a very extensive family of secondary metabolites known as glycolipids or lipo-oligosaccharides and are constituents of complex resins (glycoresins) (1) unique to the morning glory family, Convolvulaceae (2). These active principles are responsible for the drastic purgative action of all the important Convolvulaceous species used in traditional medicine throughout the world since ancient times. Several commercial purgative crude drugs can be prepared from the roots of different species of Mexican morning glories. Their incorporation as therapeutic agents in Europe is an outstanding example of the assimilation of botanical drugs from the Americas as substitutes for traditional Old World remedies (3). Even though phytochemical investigations on the constituents of these drugs were initiated during the second half of the nineteenth century, the structure of their active ingredients still remains poorly known for some examples of these purgative roots. During the last two decades, the higher resolution capabilities of modern analytical isolation techniques used in conjunction with powerful spectroscopic methods have facilitated the elucidation of the active principles of these relevant herbal products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langenheim JH (2003) Plant Resins. Chemistry, Evolution, Ecology, and Ethnobotany. Timber Press, Portland, Oregon, p 418

    Google Scholar 

  2. Eich E (2008) Solanaceae and Convolvulaceae: Secondary Metabolites. Biosynthesis, Chemotaxonomy, Biological and Economic Significance (A Handbook). Springer, Heidelberg, p 532

    Google Scholar 

  3. Pereda-Miranda R, Bah M (2003) Biodynamic Constituents in the Mexican Morning Glories: Purgative Remedies Transcending Boundaries. Curr Top Med Chem 3: 111

    CAS  Google Scholar 

  4. Huguet-Termes T (2001) New World Materia Medica in Spanish Renaissance Medicine: From Scholarly Reception to Practical Impact. Medical History 45: 359

    CAS  Google Scholar 

  5. Worth Estes J (2000) The Reception of American Drugs in Europe, 1500-1650. In: Varey S, Chabrán R, Weiner DB (eds) Searching for the Secrets of Nature. The Life and Works of Dr. Francisco Hernández. Stanford University Press, Stanford, California, p 111

    Google Scholar 

  6. Gunther RT (1968) The Greek Herbal of Dioscorides. Hafner, London, p 571

    Google Scholar 

  7. Gerard J (1975) The Herbal or General History of Plants. Dover, New York, p 872

    Google Scholar 

  8. Frampton J (1925) Joyfull Newes out of the Newe Founde World Written in Spanish by Nicholas Monardes, vol 1. Constable, London, p 54

    Google Scholar 

  9. Linares A, Rico-Gray V, Carrión G (1994) Traditional Production System of the Root of Jalap, Ipomoea purga (Convolvulaceae), in Central Veracruz, Mexico. Econ Bot 48: 84

    Google Scholar 

  10. Pereda-Miranda R, Fragoso-Serrano M, Escalante-Sánchez E, Hérnandez-Carlos B, Linares E, Bye R (2006) Profiling of the Resin Glycoside Content of Mexican Jalap Roots with Purgative Activity. J Nat Prod 69: 1460

    CAS  Google Scholar 

  11. Wagner H (1973) The Chemistry of Resin Glycosides of the Convolvulaceae Family. In: Bendz G, Santensson J (eds) Medicine and Natural Sciences. Chemistry in Botanical Classification. Academic Press, New York, p 235

    Google Scholar 

  12. Mannich C, Schumann P (1938) Über Jalapenharz und dessen Hauptbestandteil, das Convolvulin. Arch Pharm Ber Dtsch Pharm Ges 276: 211

    CAS  Google Scholar 

  13. Noda N, Ono M, Miyahara K, Kawasaki T, Okabe M (1987) Resin Glycosides. I. Isolation and Structure Elucidation of Orizabin-I, II, III and IV, Genuine Resin Glycosides from the Root of Ipomoea orizabensis. Tetrahedron 43: 3889

    CAS  Google Scholar 

  14. Umehara K, Nemoto K, Ohkubo T, Miyase T, Degawa M, Noguchi H (2004) Isolation of a New 15-Membered Macrocyclic Glycolipid Lactone, Cuscutic Resinoside A from the Seeds of Cuscuta chinensis: A Stimulator of Breast Cancer Cell Proliferation. Planta Med 70: 299

    CAS  Google Scholar 

  15. Cao S, Guza RC, Wisse JH, Miller JS, Evans R, Kingston DGI (2005) Ipomoeassins A–E, Cytotoxic Macrocyclic Glycoresins from the Leaves of Ipomoea squamosa from the Suriname Rainforest. J Nat Prod 68: 487

    CAS  Google Scholar 

  16. Cao S, Norris A, Wisse JH, Miller JS, Evans R, Kingston DGI (2007) Ipomoeassin F, a New Cytotoxic Macrocyclic Glycoresin from the Leaves of Ipomoea squamosa from the Suriname Rainforest. Nat Prod Res 21: 872

    CAS  Google Scholar 

  17. Misra AL, Tewari JD (1952) Chemical Examination of Seeds of Ipomoea muricata. III. J Indian Chem Soc 29: 430

    CAS  Google Scholar 

  18. Misra AL, Tewari JD (1953) Chemical Examination of Ipomoea muricata Seeds. IV. J Indian Chem Soc 30: 391

    CAS  Google Scholar 

  19. Khanna SN, Gupta PC (1967) Structure of Muricatin. Phytochemistry 6: 735

    CAS  Google Scholar 

  20. Miyahara K, Du XM, Watanabe M, Sugimura C, Yahara S, Nohara T (1996) Resin Glycosides XXIII. Two Novel Acylated Trisaccharides Related to Resin Glycoside from the Seeds of Cuscuta chinensis. Chem Pharm Bull 44: 481

    CAS  Google Scholar 

  21. Du X-M, Sun N-Y, Nishi M, Kawasaki T, Guo Y-T, Miyahara K (1999) Components of the Ether-Insoluble Resin Glycoside Fraction from the Seed of Cuscuta australis. J Nat Prod 62: 722

    CAS  Google Scholar 

  22. Bah M, Pereda-Miranda R (1997) Isolation and Structural Characterization of New Glycolipid Ester Type Dimers from the Resin of Ipomoea tricolor (Convolvulaceae). Tetrahedron 53: 9007

    CAS  Google Scholar 

  23. Du XM, Kohinata K, Kawasaki T, Guo YT, Miyahara K (1998) Resin Glycosides XXVI. Components of the Ether-Insoluble Glycoside-Like Fraction from Cuscuta chinensis. Phytochemistry 48: 843

    CAS  Google Scholar 

  24. Kitagawa I, Baek N-I, Kawashima K, Yokokawa Y, Yoshikawa M, Ohashi K, Shibuya H (1996) Indonesian Medicinal Plants XV. Chemical Structures of Five New Resin-Glycosides, Merremosides A, B, C, D, and E, from the Tuber of Merremia mammosa (Convolvulaceae). Chem Pharm Bull 44: 1680

    CAS  Google Scholar 

  25. Kitagawa I, Ohashi K, In N, Sakagami M, Yoshikawa M, Shibuya H (1997) Indonesian Medicinal Plants. XIX. Chemical Structures of Four Additional Resin-Glycosides, Mammosides A, B, H1 and H2, from the Tuber of Merremia mammosa (Convolvulaceae). Chem Pharm Bull 45: 786

    CAS  Google Scholar 

  26. Ono M, Kawasaki T, Miyahara K (1989) Resin Glycosides. V. Identification and Characterization of the Component Organic and Glycosidic Acids of the Ether-Soluble Crude Resin Glycosides (“Jalapin”) from Rhizoma Jalapae Brasiliensis (Roots of Ipomoea operculata). Chem Pharm Bull 37: 3209

    CAS  Google Scholar 

  27. Ono M, Fujimoto K, Kawata M, Fukunaga T, Kawasaki T, Miyahara K (1992) Resin Glycosides. XIII. Operculins VI, XI, XII, XIII, XIV and XV, the Ether-Soluble Resin Glycosides (“Jalapin”) from Rhizoma Jalapae Brasiliensis (Roots of Ipomoea operculata). Chem Pharm Bull 40: 1400

    CAS  Google Scholar 

  28. Noda N, Takahashi N, Miyahara K, Yang CR (1998) Stoloniferins VIII–XII, Resin Glycosides from Ipomoea stolonifera. Phytochemistry 48: 837

    CAS  Google Scholar 

  29. Escobedo-Martínez C, Pereda-Miranda R (2007) Resin Glycosides from Ipomoea pes-caprae. J Nat Prod 70: 974

    Google Scholar 

  30. Chérigo L, Pereda-Miranda R, Gibbons S (2009) Bacterial Resistance Modifying Tetrasaccharide Agents from Ipomoea murucoides. Phytochemistry 70: 222

    Google Scholar 

  31. Noda N, Yoda S, Kawasaki T, Miyahara K (1992) Resin Glycosides XV. Simonins I–V, Ether-Soluble Resin Glycosides (Jalapins) from the Roots of Ipomoea batatas (cv. Simon). Chem Pharm Bull 40: 3163

    CAS  Google Scholar 

  32. Noda N, Horiuchi Y (2008) The Resin Glycosides from the Sweet Potato (Ipomoea batatas L. Lam.). Chem Pharm Bull 56: 1607

    Google Scholar 

  33. Noda N, Kobayashi H, Miyahara K, Kawasaki T (1988) Resin Glycosides II. Identification and Characterization of the Component Organic and Glycosidic Acids of the Crude Resin Glycosides from the Seeds of Ipomoea muricata. Chem Pharm Bull 36: 627

    CAS  Google Scholar 

  34. Noda N, Kobayashi H, Miyahara K, Kawasaki T (1988) Resin Glycosides III. Isolation and Structural Study of the Genuine Resin Glycosides, Muricatins I–VI, from the Seeds of Ipomoea muricata. Chem Pharm Bull 36: 920

    CAS  Google Scholar 

  35. Noda N, Nishi M, Miyahara K, Kawasaki T (1988) Resin Glycosides IV. Two New Resin Glycosides, Muricatins VII and VIII, from the Seeds of Ipomoea muricata. Chem Pharm Bull 36: 1707

    CAS  Google Scholar 

  36. Fang Y, Chai W, Chen S, He Y, Zhao L, Peng J, Huang H, Xin B (1993) On the Structure of Calonyctin A, a Plant Growth Regulator. Carbohyd Res 245: 259

    CAS  Google Scholar 

  37. Ono M, Fukunaga T, Kawasaki T, Miyahara K (1990) Resin Glycosides VIII. Four New Glycosidic Acids, Operculinic Acids D, E, F, and G, of the Ether-Soluble Crude Resin Glycosides (“Jalapin”) from Rhizoma Jalapae Brasiliensis (Roots of Ipomoea operculata). Chem Pharm Bull 38: 2650

    CAS  Google Scholar 

  38. Ono M, Ueguchi T, Murata H, Kawasaki T, Miyahara K (1992) Resin Glycosides XVI. Marubajalapins I–VII, New Ether-Soluble Resin Glycosides from Pharbitis purpurea. Chem Pharm Bull 40: 3169

    CAS  Google Scholar 

  39. Ono M, Ueguchi T, Kawasaki T, Miyahara K (1992) Resin Glycosides XVII. Marubajalapins VIII–XI, Jalapins from the Aerial Part of Pharbitis purpurea. Yakugaku Zasshi 112: 866

    CAS  Google Scholar 

  40. Yin Y-Q, Wang J-S, Luo J-G, Kong L-Y (2009) Novel acylated lipo-oligosaccharides from the tubers of Ipomoea batatas. Carbohyd Res 344: 466

    CAS  Google Scholar 

  41. Noda N, Kogetsu H, Kawasaki T, Miyahara K (1992) Scammonins VII and VIII. Two Resin Glycosides from Convolvulus scammonia. Phytochemistry 31: 2761

    CAS  Google Scholar 

  42. Noda N, Kogetsu H, Kawasaki T, Miyahara K (1990) Scammonins I and II. The Resin Glycosides of Radix Scammoniae from Convolvulus scammonia. Phytochemistry 29: 3565

    CAS  Google Scholar 

  43. Kogetsu H, Noda N, Kawasaki T, Miyahara K (1991) Scammonins III–VI. Resin Glycosides of Convolvulus scammonia. Phytochemistry 30: 957

    Google Scholar 

  44. Hernández-Carlos B, Bye R, Pereda-Miranda R (1999) Orizabins V–VIII. Tetrasaccharide Glycolipids from the Mexican Scammony Root (Ipomoea orizabensis). J Nat Prod 62: 1096

    Google Scholar 

  45. Pereda-Miranda R, Hernández-Carlos B (2002) HPLC Isolation and Structural Elucidation of Diastereomeric Niloyl Ester Tetrasaccharides from Mexican Scammony Root. Tetrahedron 58: 3145

    CAS  Google Scholar 

  46. Austin DF, Huáman Z (1996) A Synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon 45: 3

    Google Scholar 

  47. Mirón-López G, Herrera-Ruiz M, Estrada-Soto S, Aguirre-Crespo F, Vásquez-Navarrete L, León-Rivera I (2007) Resin Glycosides from the Roots of Ipomoea tyrianthina and Their Biological Activity. J Nat Prod 70: 557

    Google Scholar 

  48. León-Rivera I, Mirón-López G, Molina-Salinas GM, Herrera-Ruiz M, Estrada-Soto S, Gutierrez M, Alonso-Cortes D, Navarrete-Vásquez G, Ríos M, Said-Fernández S (2008) Tyrianthinic Acids from Ipomoea tyrianthina and Their Antimycobacterial Activity, Cytotoxicity and Effects on the Central Nervous System. J Nat Prod 71: 1686

    Google Scholar 

  49. Pereda-Miranda R, Escalante-Sánchez E, Escobedo-Martínez C (2005) Characterization of Lipophilic Pentasaccharides from Beach Morning Glory (Ipomoea pes-caprae). J Nat Prod 68: 226

    CAS  Google Scholar 

  50. Calis I, Sezgin Y, Dönmez AA, Rüedi P, Tasdemir D (2007) Crypthophilic Acids A, B, and C: Resin Glycosides from Aerial Parts of Scrophularia crypthophila. J Nat Prod 70: 43

    Google Scholar 

  51. Enriquez RG, Leon I, Perez F, Walls F, Carpenter KA, Puzzuoli FV, Reynolds WF (1992) Characterization, by Two-Dimensional NMR Spectroscopy, of a Complex Tetrasaccharide Glycoside Isolated from Ipomoea stans. Can J Chem 70: 1000

    CAS  Google Scholar 

  52. Reynolds WF, Yu M, Enriquez RG, Gonzalez H, Leon I, Magos G, Villareal ML (1995) Isolation and Characterization of Cytotoxic and Antibacterial Tetrasaccharide Glyclosides from Ipomoea stans. J Nat Prod 58: 1730

    CAS  Google Scholar 

  53. León I, Enriquez RG, Gnecco D, Villareal ML, Cortés DA, Reynolds WF, Yu M (2004) Isolation and Characterization of Five New Tetrasaccharide Glycosides from the Roots of Ipomoea stans and Their Cytotoxic Activity. J Nat Prod 67: 1552

    Google Scholar 

  54. Gaspar EMM (2001) Soldanelline B, the First Acylated Nonlinear Tetrasaccharide Macrolactone from the European Convolvulaceae Calystegia soldanella. Eur J Org Chem 2001: 369

    Google Scholar 

  55. Pereda-Miranda R, Mata R, Anaya AL, Wickramaratne DBM, Pezzuto JM, Kinghorn AD (1993) Tricolorin A, Major Phytogrowth Inhibitor from Ipomoea tricolor. J Nat Prod 56: 571

    CAS  Google Scholar 

  56. Bah M, Pereda-Miranda R (1996) Detailed FAB-Mass Spectrometry and High Resolution NMR Investigations of Tricolorins A–E, Individual Oligosaccharides from the Resins of Ipomoea tricolor (Convolvulaceae). Tetrahedron 52: 13063

    CAS  Google Scholar 

  57. Wagner H, Wenzel G, Chari VM (1978) The Turpethinic Acids of Ipomoea turphetum L. Planta Med 33: 144

    CAS  Google Scholar 

  58. León I, Mirón G, Alonso D (2006) Characterization of Pentasaccharide Glycosides from the Roots of Ipomoea arborescens. J Nat Prod 69: 896

    Google Scholar 

  59. Harrison DA, Madhusudan KP, Kulshreshtha DK (1985) Structure of Dichroside D, a Fatty Acid Glycoside from Ipomoea dichroa. Carbohyd Res 143: 207

    CAS  Google Scholar 

  60. Kitagawa I, In N, Ykokawa Y, Yoshikawa M (1996) Chemical Structures of Four New Resin-Glycosides, Meremosides F, G, H1, and H2, from the Tuber of Merremia mammosa (Convolvulaceae). Chem Pharm Bull 44: 1693

    CAS  Google Scholar 

  61. Wagner H, Schwarting G (1997) Struktur der Microphyllinsäure aus dem Harz von Convolvulus microphyllus. Phytochemistry 16: 715

    Google Scholar 

  62. Ono M, Honda F, Karahashi A, Kawasaki T, Miyahara K (1997) Resin Glycosides XXV. Multifidins I and II, New Jalapins, from the seed of Quamoclit x multifida. Chem Pharm Bull 45: 1955

    CAS  Google Scholar 

  63. León I, Enriquez RG, Nieto DA, Alonso D, Reynolds WF, Aranda E, Villa J (2005) Pentasaccharide Glycosides from the Roots of Ipomoea murucoides. J Nat Prod 68: 1141

    Google Scholar 

  64. Escalante-Sánchez E, Rosas-Ramírez D, Linares E, Bye R, Pereda-Miranda R (2008) Batatinosides II−VI, Acylated Lipooligosaccharides from the Resin Glycosides of Sweet Potato. J Agric Food Chem 56: 9423

    Google Scholar 

  65. Bah M, Chérigo L, Cardoso A, Fragoso-Serrano M, Hammond GB, Pereda-Miranda R (2007) Intrapilosins I-VII, Pentasaccharides from the Seeds of Ipomoea intrapilosa. J Nat Prod 70: 1153

    CAS  Google Scholar 

  66. Barnes CC, Smalley MK, Manfredi KP, Kindscher K, Loring H, Sheeley DM (2003) Characterization of an Anti-tuberculosis Resin Glycoside from the Prairie Medicinal Plant Ipomoea leptophylla. J Nat Prod 66: 1457

    CAS  Google Scholar 

  67. Ono M, Kubo K, Miyahara K, Kawasaki T (1989) Operculin I and II, New Ether-Soluble Resin Glycosides (“Jalapin”) with Fatty Acid Ester Groups from Rhizoma Jalapae Braziliensis (Roots of Ipomoea operculata). Chem Pharm Bull 37: 241

    CAS  Google Scholar 

  68. Ono M, Kawasaki T, Miyahara K (1991) Resin Glycosides XI. Operculins III, IV, IX, X, XVI, XVII and XVIII. New Ether-Soluble Resin Glycosides of Rhizoma Jalapae Braziliensis (Root of Ipomoea operculata). Chem Pharm Bull 39: 2534

    CAS  Google Scholar 

  69. Noda N, Takahashi T, Kawasaki T, Miyahara K, Yang CR (1994). Stoloniferins I-VII, Resin Glycosides from Ipomoea stolonifera. Phytochemistry 36: 365

    CAS  Google Scholar 

  70. Chérigo L, Pereda-Miranda R (2006) Resin Glycosides from the Flowers of Ipomoea murucoides. J Nat Prod 69: 595

    Google Scholar 

  71. Chérigo L, Pereda-Miranda R, Fragoso-Serrano M, Jacobo-Herrera N, Kaatz GW, Gibbons S (2008) Inhibitors of Bacterial Multidrug Efflux Pumps from the Resin Glycosides of Ipomoea murucoides. J Nat Prod 71: 1037

    Google Scholar 

  72. Ono M, Kuwabata K, Kawasaki T, Miyahara K (1992) Resin Glycosides XVI. Quamoclins I-IV, New Ether-Soluble Resin Glycosides (Jalapin) from the Seeds of Quamoclit pennata. Chem Pharm Bull 40: 2674

    CAS  Google Scholar 

  73. Noda N, Tsuji K, Miyahara K, Yang CR (1994) Resin Glycosides XXI. Tuguajalapins I–X, the Resin Glycosides Having Long-Chain Fatty Acid Groups from the Root of Merremia hungaiensis. Chem Pharm Bull 42: 2011

    CAS  Google Scholar 

  74. Ono M, Fukuda H, Murata H, Miyahara K (2009) Resin glycosides from the leaves and stems of Ipomoea digitata. J Nat Med 63: 176

    CAS  Google Scholar 

  75. Escobedo-Martínez C (2007) Resinas Glicosídicas de la Planta Medicinal Ipomoea pes-caprae. PhD Thesis, Universidad Nacional Autónoma de México, p 71

    Google Scholar 

  76. Srivastava R, Sachdev K, Madhusudanan KP, Kulshreshtha D (1991) Structure of Pescaproside E, Fatty Acid Glycoside from Ipomoea pes-caprae. Carbohyd Res 212: 169

    CAS  Google Scholar 

  77. Ono M, Noda N, Kawasaki T, Miyahara K (1990) Resin Glycosides. VII. Reinvestigation of the Component Organic and Glycosidic Acids of Pharbitin, the Crude Ether-Insoluble Resin Glycoside (“Convolvulin”) of Pharbitis Semen (Seeds of Pharbitis nil). Chem Pharm Bull 38: 1892

    CAS  Google Scholar 

  78. Escalante-Sánchez E, Pereda-Miranda R (2007) Batatins I and II, Ester-Type Dimers of Acylated Pentasaccharides from the Resin Glycosides of Sweet Potato. J Nat Prod 70: 1029

    Google Scholar 

  79. Yin Y, Li Y, Kong L (2008) Pentasaccharide Glycosides from the Tubers of Sweet Potato (Ipomoea batatas). J Agric Food Chem 56: 2363

    CAS  Google Scholar 

  80. Tao H, Hao X, Liu J, Ding J, Fang Y, Gu Q, Zhu W (2008) Resin Glycoside Constituents of Ipomoea pes-caprae (Beach Morning Glory). J Nat Prod 71: 1998

    CAS  Google Scholar 

  81. Gaspar E (1999) New Pentasaccharide Macrolactone from the European Convolvulaceae Calystegia soldanella. Tetrahedron Lett 40: 6861

    CAS  Google Scholar 

  82. Ono M, Nakagawa T, Kawasaki T, Miyahara K (1993) Woodrosins I and II, Ether-Insoluble Resin Glycosides from the Stems of Ipomoea tuberosa. Chem Pharm Bull 41: 1925

    CAS  Google Scholar 

  83. MacLeod JK, Ward A, Oelrichs PB (1997) Structural Investigation of Resin Glycosides from Ipomoea lonchophylla. J Nat Prod 60: 467

    CAS  Google Scholar 

  84. Wagner H, Kazmaier P (1977) Struktur der Operculinsäure aus dem Harz von Ipomoea operculata. Phytochemistry 16: 711

    CAS  Google Scholar 

  85. Okabe H, Kawasaki T (1972) Studies on Resin Glycosides III. Complete Structures of Pharbitic Acids C and D. Chem Pharm Bull 20: 514

    CAS  Google Scholar 

  86. Yin Y-Q, Huang X-F, Kong L-Y, Niwa M (2008) Three New Pentasaccharide Resin Glycosides from the Roots of Sweet potato (Ipomoea batatas). Chem Pharm Bull 56: 1670

    CAS  Google Scholar 

  87. Escalante-Sánchez E (2007) Caracterización de la Composición Química de las Resinas Glicosídicas de Tres Remedios Herbolarios Purgantes del Género Ipomoea (Convolvulaceae). PhD Thesis, Universidad Nacional Autónoma de México, p 153

    Google Scholar 

  88. Noda N, Tsuji K, Kawasaki T, Miyahara K, Hanazono H, Yang CR (1995) A Novel Resin Glycoside, Merremin (Tuguajalapin X Dimer), from Merremia hungaiensis. Chem Pharm Bull 43: 1061

    CAS  Google Scholar 

  89. Okabe H, Koshito N, Tanaka K, Kawasaki T (1971) Studies on Resin Glycosides. II. Unhomogeneity of “Pharbitic Acid” and Isolation and Partial Structures of Pharbitic Acids C and D, the Major Constituents of “Pharbitic Acid”. Chem Pharm Bull 19: 2394

    CAS  Google Scholar 

  90. Kubo I, Nakatsu T (1990) Recent Examples of Preparative-Scale Recycling High Performance Liquid Chromatography in Natural Products Chemistry. LC-GC 8: 933

    CAS  Google Scholar 

  91. White CA, Kennedy JF (1986) Oligosaccharides. In: Chaplin MF, Kennedy JF (eds) Carbohydrate Analysis. A Practical Approach. IRL Press, Oxford, UK p 37

    Google Scholar 

  92. Okabe H, Kawasaki T (1970) Structures of Pharbitic Acids C and D. Tetrahedron Lett 36: 3123

    Google Scholar 

  93. Wolter MA, Engels JW, Montanarella L, Tilio R, Faccheti S (1995) Influence of Matrix on FAB-MS of Oligonucleotides. J Mass Spectrom 30: 485

    CAS  Google Scholar 

  94. Dass C (1996) The Role of a Liquid Matrix in Controlling FAB-Induced Fragmentation. J Mass Spectrum 31: 77

    CAS  Google Scholar 

  95. Du XM, Sun NY, Nishi M, Kawasaki T, Guo YT, Miyahara K (1999) Components of the Ether-Insoluble Resin Glycoside Fraction from the Seed of Cuscuta australis. J Nat Prod 62: 722

    CAS  Google Scholar 

  96. Duus JØ, Gotfredsen CH, Bock K (2000) Carbohydrate Structural Determination by NMR Spectroscopy: Modern Methods and Limitations. Chem Rev 100: 4589

    CAS  Google Scholar 

  97. Agrawal PK, Pathak AK (1996) Nuclear Magnetic Resonance Spectroscopic Approaches for the Determination of Interglycosidic Linkage and Sequence in Oligosaccharides. Phytochem Anal 7: 113

    CAS  Google Scholar 

  98. Ono M, Yamada F, Noda N, Kawasaki T, Miyahara K (1993) Resin Glycosides. XVIII. Determination by Mosher’s Method of the Absolute Configurations of Mono- and Dihydroxyfatty Acids Originated from Resin Glycosides. Chem Pham Bull 41: 1023

    CAS  Google Scholar 

  99. Imberty A, Pérez S (2000) Structure, Conformation, and Dynamic of Bioactive Oligosaccharides: Theoretical Approaches and Experimental Validations. Chem Rev 100: 4567

    CAS  Google Scholar 

  100. Rencurosi A, Mitchell EP, Cioci G, Pérez S, Pereda-Miranda R, Imberty A (2004) Crystal Structure of Tricolorin A: Molecular Rationale for the Biological Properties of Resin Glycosides Found in Some Mexican Herbal Remedies. Angew Chem Int Ed 43: 5918

    CAS  Google Scholar 

  101. Lehmann CW, Fürstner A, Müller T (2000) Macrocyclic Substructure of Tricolorin A. The First Crystal Structure of a Resin Glycoside. Z Kristallogr 215: 114

    CAS  Google Scholar 

  102. Wormald MR, Petrescu AJ, Pao YL, Glithero A, Elliot T, Dwek RA (2002) Conformational Studies of Oligosaccharides and Glycopeptides: Complementarity of NMR, X-Ray Crystallography, and Molecular Modelling. Chem Rev 102: 371

    CAS  Google Scholar 

  103. Meyer B (1990) Conformational Aspects of Oligosaccharides. Topics Curr Chem 154: 141

    CAS  Google Scholar 

  104. Jiang ZH, Geyer A, Schmidt RR (1995) The Macrolidic Glycolipid Calonyctin A, a Plant Growth Regulator: Synthesis, Structural Assignment, and Conformational Analysis in Micellar Solution. Angew Chem Int Ed Engl 34: 2520

    CAS  Google Scholar 

  105. Furukawa J-I, Kobayashi S, Nomizu M, Nishi N, Sakairi N (2000) Total Synthesis of Calonyctin A2, a Macrolidic Glycolipid with Plant Growth-Promoting Activity. Tetrahedron Lett 41: 3453

    CAS  Google Scholar 

  106. Larson DP, Heathcock CH (1997) Total Synthesis of Tricolorin A. J Org Chem 62: 8406

    CAS  Google Scholar 

  107. Lu S-F, O’yang Q, Guo Z-W, Yu B, Hui Y-Z (1997) Total Synthesis of Tricolorin A. J Org Chem 62: 8400

    CAS  Google Scholar 

  108. Brito-Arias M, Pereda-Miranda R, Heathcock CH (2004) Synthesis of Tricolorin F. J Org Chem 69: 4567

    CAS  Google Scholar 

  109. Fürstner A, Müller T (1998) Metathesis Route to Resin Glycosides: Formal Total Synthesis of Tricolorin A. J Org Chem 63: 424

    Google Scholar 

  110. Fürstner A, Müller T (1999) Efficient Total Syntheses of Resin Glycosides and Analogues by Ring-Closing Olefin Metathesis. J Am Chem Soc 121: 7814

    Google Scholar 

  111. Fürstner A, Jeanjean F, Razon P, Wirtz C, Mynott R (2003) Total Synthesis of Woodrosin I— Part 1: Preparation of the Building Blocks and Evaluation of the Glycosylation Strategy. Chem Eur J 9: 307

    Google Scholar 

  112. Fürstner A, Jeanjean F, Razon P (2002) Total Synthesis of Woodrosin I. Angew Chem Int Ed 41: 2097

    Google Scholar 

  113. Fürstner A, Nagano T (2007) Total Syntheses of Ipomoeassin B and E. J Am Chem Soc 129: 1906

    Google Scholar 

  114. Fürstner A (2004) Total Syntheses and Biological Assessment of Macrocyclic Glycolipids. Eur J Org Chem 2004: 943

    Google Scholar 

  115. Castelli MV, Cortés JCG, Escalante AM, Bah M, Pereda-Miranda R, Ribas JC, Zacchino SA (2002) Inhibition of (1,3)-β-Glucan Synthase by Glycoresins from Convolvulaceous Plants. Planta Med 68: 739

    CAS  Google Scholar 

  116. Pereda-Miranda R (1995) Bioactive Natural Products from Traditionally Used Mexican Plants. In: Arnason JT, Mata R, Romeo JT (eds) Phytochemistry of Medicinal Plants. Plenum Press, New York, p 83

    Google Scholar 

  117. Rivero-Cruz I, Acevedo L, Guerrero JA, Martínez S, Bye R, Pereda-Miranda R, Franzblau S, Timmermann BN, Mata R (2005) Antimycobacterial Agents from Selected Mexican Medicinal Plants. J Pharm Pharmacol 57: 1117

    CAS  Google Scholar 

  118. Pereda-Miranda R, Kaatz GW, Gibbons S (2006) Polyacylated Oligosaccharides from Medicinal Mexican Morning Glory Species as Antibacterials and Inhibitors of Multidrug Resistance in Staphylococcus aureus. J Nat Prod 69: 406

    CAS  Google Scholar 

  119. Pereda-Miranda R, Villatoro-Vera R, Bah M, Lorence A (2009) Pore-Forming Activity of Morning Glory Resin Glycosides in Model Membranes. Rev Latinoamer Quimica 37: 144

    Google Scholar 

  120. Kitagawa I, Ohashi K, Kawanishi H, Shibuya H, Shinkai K, Akedo H (1989) Ionophoretic Activities of Oligopeptide Lactones and Resin-Glycosides in Human Erythrocytes. Chem Pharm Bull 37: 1679

    CAS  Google Scholar 

  121. Hernández R, Vuelvas A, García A, Fragoso M, Pereda R, Ibarra C, Rojas A (2008) Calcium-Dependent Effect of Tricolorin A on Intestinal and Arterial Smooth Muscle Contractility. 7th Joint Meeting of AFERP, ASP, GA, PSE and SIF. Planta Med 74: 973

    Google Scholar 

  122. Peterson JK, Harrison HF (1991) Isolation of Substance from Sweet Potato (Ipomoea batatas) Periderm Tissue that Inhibits Seed Germination. J Chem Ecol 17: 943

    CAS  Google Scholar 

  123. Mata R, Pereda-Miranda R, Lotina-Hennsen B (1996) Natural Products from Mexican Plants as a Source of Potential Herbicide Agents. In: Rodríguez-Hahn L, Pandalai SG (eds) Secondary Metabolites from Mexican Plants: Chemistry and Biological Properties. Research Signpost, Trivandrum, India p 59

    Google Scholar 

  124. Achnine L, Pereda-Miranda R, Iglesias-Prieto R, Moreno-Sánchez R, Lotina-Hennsen B (1999) Tricolorin A, a Potent Natural Uncoupler and Inhibitor of Photosystem II Acceptor Side of Spinach Chloroplasts. Physiol Plant 106: 246

    CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author would like to express his gratitude to both the “Consejo Nacional de Ciencia y Tecnología” and the “Dirección General de Asuntos del Personal Académico” (UNAM) for their support of the chemical investigations of the morning glories used in Mexican traditional medicine through a series of grants over the past decade.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogelio Pereda-Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Pereda-Miranda, R., Rosas-Ramírez, D., Castañeda-Gómez, J. (2010). Resin Glycosides from the Morning Glory Family. In: Kinghorn, A., Falk, H., Kobayashi, J. (eds) Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, Vol. 92. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 92. Springer, Vienna. https://doi.org/10.1007/978-3-211-99661-4_2

Download citation

Publish with us

Policies and ethics