Advertisement

Optimization of Mechatronic Systems using the Software Package NEWOPT/AIMS

  • Peter Eberhard
  • Christian Breuninger
  • Florian Dignath
  • Lars Kübler
Chapter
  • 1.7k Downloads
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 511)

Abstract

Modeling and simulation of various mechanical systems with the multibody system approach is a well established method for analyzing their dynamical behavior. The mathematical description of mechanical systems enables their systematic improvement by numerical optimization.

Keywords

Design Variable Evolution Strategy Optimization Criterion Multibody System Sequential Quadratic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bestle, D. and Eberhard, P. NEWOPT/AIMS 2.2. Ein Programmsystem zur Analyse und Optimierung von mechanischen Systemen. Anleitung AN-35. Institute of Engineering and Computational Mechanics, University of Stuttgart, 1994 [in German] Google Scholar
  2. Bestle, D. Analyse und Optimierung von Mehrkörpersystemen. Berlin: Springer-Verlag, 1994. [in German] Google Scholar
  3. Dignath, F. Zur Optimierung mechatronischer Systeme mit nicht-differenzierbaren Kriterien. Dissertation. VDI Fortschritt-Berichte, Reihe 8, Nr. 1031. Düsseldorf: VDI Verlag, 2004. [in German] Google Scholar
  4. Dignath, F., Breuninger, C., Eberhard, P. and Kübler, L. Optimiration of Mechatronic Systems using the Software Package NEWOPT/AIMS. Multibody System Dynamics, Vol. 13, No. 1, 2005, pp. 85–100.zbMATHCrossRefGoogle Scholar
  5. Eberhard, P., Dignath, F. and Kübler, L. Parallel Evolutionary Optimization of Multibody Systems with Application to Railway Dynamics. Multibody System Dynamics, Vol. 9, No. 2, pp. 143–164, 2003.zbMATHCrossRefGoogle Scholar
  6. Eberhard, P. and Dignath, F. Control Optimization of Multibody Systems Using Point-and Piecewise Defined Optimization Criteria Engineering Optimization, Vol. 32, pp. 417–438, 2000.CrossRefGoogle Scholar
  7. Geist, A., Beguelin, A. Dongarra, J., Jiang, W., Manchek, R. and Sunderam, V. PVM 3 User’s Guide and Reference Manual. Oak Ridge: Oak Ridge National Laboratory, 1994.Google Scholar
  8. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning. Reading: Addison-Wesley, 1989.Google Scholar
  9. Hermle, M. and Eberhard, P. Control and Parameter Optimization of Flexible Robots. Mechanics of Structures and Machines, Vol. 28, No. 2–3, pp. 137–168, 2000.Google Scholar
  10. Kreuzer, E. and Leister, G. Programmsystem NEWEUL’ 90. Anleitung AN-24. Institute of Engineering and Computational Mechanics, University of Stuttgart (1991). [in German]Google Scholar
  11. Schiehlen, W. and Eberhard, P. Technische Dynamik. Teubner, Wiesbaden. 2004 [in German] zbMATHGoogle Scholar
  12. Schwefel, H.-P. Evolution and Optimum Seeking. New York: Wiley & Sons, 1995.Google Scholar
  13. Shabana, A. Dynamics of Multibody Systems. Cambridge: University Press, 1998.zbMATHGoogle Scholar

Copyright information

© CISM, Udine 2009

Authors and Affiliations

  • Peter Eberhard
    • 1
  • Christian Breuninger
    • 1
  • Florian Dignath
    • 1
  • Lars Kübler
    • 1
  1. 1.Institute of Engineering and Computational MechanicsUniversity of StuttgartGermany

Personalised recommendations