Optimization of Mechanical Systems

  • Peter Eberhard
  • Dieter Bestle
  • Werner Schiehlen
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 511)


During the last decades, increasing computational power and advances in the theoretical methods changed the focus from a pure analysis to an extensive synthesis of mechanical systems. After modeling and simulating the system behavior, we choose the systems design variables to reach optimally engineering goals and system specifications.


Design Variable Simulated Annealing Performance Criterion Multibody System Simulated Annealing Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bestle, D. and Eberhard, P. Analyzing and Optimizing Multibody Systems Mech. Struct. and Mach. 20 1992 67–92.CrossRefGoogle Scholar
  2. Bestle, D. and Eberhard, P. Optimierung in der Fahrzeugdynamik. Research Report FB-19. Institute of Engineering and Computational Mechanics, University of Stuttgart 1994 a. [in German]Google Scholar
  3. Bestle, D. and Eberhard, P. NEWOPT/AIMS 2.2 — Ein Programmpaket zur Analyse und Optimierung von Mehrkörpersystemen. User’s Manual. Institute of Engineering and Computational Mechanics, University of Stuttgart 1994 b. [in German] Google Scholar
  4. Eberhard, P. Zur Mehrkriterienoptimierung von Mehrkörpersystemen. VDI-Fortschritt-Berichte, Reihe 11, No. 227. Düsseldorf: VDI-Verlag 1996. [in German] Google Scholar
  5. Eberhard, P., Schiehlen, W. and Bestle, D.: Optimization of Stochastic Multibody Systems. In: Proc. 15 th Biennial Conference on Noise and Vibration, Boston, pp. 981–991. New York: ASME 1995.Google Scholar
  6. Eberhard, P., Schiehlen, W. and Bestle, D. Some Advantages of Stochastic Methods in Multicriteria Optimization of Multibody Systems. Archive of Applied Mechanics (Sonderheft zum 70. Jahrestag), Vol 69, No. 8, 1999, pp. 543–554.zbMATHCrossRefGoogle Scholar
  7. Dignath, F., Breuninger, C., Eberhard, P. and Kübler, L. Optimization of Mechatronic Systems using the Software Package NEWOPT/AIMS. Multibody System Dynamics, Vol. 13, No. 1, 2005, pp. 85–100.zbMATHCrossRefGoogle Scholar
  8. Fandel, G., Gal, T. and Hanne, T. (eds.) Multiple Criteria Decision Making. Berlin: Springer 1997.zbMATHGoogle Scholar
  9. Fletcher, R. Practical Methods of Optimization. Chichester: J. Wiley & Sons 1987.Google Scholar
  10. Horst, R., Pardalos, P. and Thoai, H. Introduction to Global Optimization. Dordrecht: Kluwer Academic Publishers 1995.zbMATHGoogle Scholar
  11. Gill, P., Murray, W. and Saunders, M. Large-Scale SQP Methods and their Application in Trajectory Optimization. In: Computational Optimal Control Bulirsch, R.; Kraft, D. (eds.), Basel: Birkhäuser 1994.Google Scholar
  12. Ingber, L. Very Fast Simulated Reannealing. Mathematical Computational Modeling 12 (1989) 967–973.zbMATHCrossRefMathSciNetGoogle Scholar
  13. Kolonko, M. Some New Results on Simulated Annealing Applied to the Job Scheduling Problem. Europ. Journal of Operations Research., Vol. 113, Issue 1, Pages 123–136, 1999.zbMATHCrossRefGoogle Scholar
  14. Kreuzer, E. and Leister, G. Programmsystem NEWEUL’92. User’s Manual. Institute of Engineering and Computational Mechanics, University of Stuttgart 1992. [in German] Google Scholar
  15. Kurz, T., Eberhard, P., Henninger, C. and Schiehlen, W. From Neweul to Neweul-M2: Symbolical equations of motion for multibody system analysis and synthesis. Multibody System Dynamics, submitted for publication, 2009.Google Scholar
  16. Petersen, U. Zur Dynamik eines mechatronisch gekoppelten Fahrzeuggespanns. VDI-Fortschritt-Berichte, Reihe 12, No. 403. Düsseldorf: VDI-Verlag 1999. [in German] Google Scholar
  17. Popp, K. and Schiehlen, W. Fahrzeugdynamik. Stuttgart: B.G. Teubner 1993. [in German] Google Scholar
  18. Rosen, B. Function Optimization based on Advanced Simulated Annealing. In Proc.: IEEE Workshop on Physics and Computation — Phys. Comp.’ 92, pp. 289–293. Dallas: IEEE Press 1992Google Scholar
  19. Schiehlen, W. Research Trends in Multibody System Dynamics. Multibody System Dynamics. 18, 2007. pp. 3–13.zbMATHCrossRefMathSciNetGoogle Scholar
  20. Schiehlen, W. Vehicle and Guideqay Modelling: Suspension Systems. In: Dynamical Analysis of Vehicle Systems. CISM Courses and Lectures 497. W. Schiehlen (ed.). Wien: Springer 2007. pp. 1–74.CrossRefGoogle Scholar
  21. Schittkowski, K. NIPQL: A Fortran Subroutine Solving Constrained Nonlinear Programming Problems. Annals of Operations Research 5 (1986) 485–500.MathSciNetGoogle Scholar
  22. Stadler, W. (ed.) Multicriteria Optimization in Engineering and in the Sciences. New York: Plenum Press 1988.zbMATHGoogle Scholar
  23. Wimmer, J. Methoden zur ganzheitlichen Optimierung des Fahrwerks von Personenkraftwagen. VDI-Fortschritt-Berichte, Reihe 12, No. 332. Düsseldorf: VDI-Verlag 1997. [in German] Google Scholar
  24. Zoller, C. Optimierung von Mehrkörpersystemen mit statistischen Methoden. Student Thesis. Institute of Engineering and Computational Mechanics, University of Stuttgart 1994. [in German] Google Scholar

Copyright information

© CISM, Udine 2009

Authors and Affiliations

  • Peter Eberhard
    • 1
  • Dieter Bestle
    • 2
  • Werner Schiehlen
    • 1
  1. 1.Institute of Engineering and Computational MechanicsUniversity of StuttgartGermany
  2. 2.BTU CottbusGermany

Personalised recommendations