Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 510))

Abstract

Chaotic advection has developed into one of the primary tools for analyzing stirring and estimating mixing in laminar flows. Much of the current interest in laminar mixing is focused on smallscale systems, and many of the key applications are in biomedical systems. Here I discuss the use of chaotic advection in designing a mixing protocol to improve DNA microarray analysis. The accuracy and sensitivity of the results can be improved by mixing the solution of unknown DNA across the microarray surface by periodically operating an arrangments of sources and sinks. Optimal operating parameters are predicted using an investigation of chaotic advection in a mathematical model of the system. The ndings of the chaos analysis are consistent with experimental mixing results, supporting the use of chaotic advection for predicting and optimizing mixing when designing fluid-based biomedical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • N. B. Adey, M. Lei, M. T. Howard, J. D. Jensen, D. A. Mayo, D. L. Butel, S. C. Coffin, T. C. Moyer, D. E. Slade, M. K. Spute, A. M. Hancock, G. T. Eisenho er, B. K. Dalley, and M. R. McNeely. Gains in sensitivity with a device that mixes microarray hybridization solution in a 25-μm-thick chamber. Anal. Chem., 74:6413–6417, 2002.

    Article  Google Scholar 

  • H. Aref. Chaotic advection of fluid particles. Proc. R. Soc. London A, 434: 273–289, 1990.

    Google Scholar 

  • H. Aref. The development of chaotic advection. Phys. Fluids, 14(4):1315–1325, 2002.

    Article  MathSciNet  Google Scholar 

  • V. Benoit, A. Steel, M. Torres, Y.-Y. Yu, H. Yang, and J. Cooper. Evaluation of three-dimensional microchannel glass biochips for multiplexed nucleic acid fluorescence hybridization assays. Anal. Chem., 73(11):2412–2420, 2001.

    Article  Google Scholar 

  • M. A. Bynum and G. B. Gordon. Hybridization enhancement using microfluidic planetary centrifugal mixing. Anal. Chem., 76:7039–7044, 2004.

    Article  Google Scholar 

  • B. J. Cheek, A. B. Steel, M. P. Torres, Y. Y. Yu, and H. Yang. Chemiluminescence detection for hybridization assays on the flow-thru chip, a three-dimensional microchannel biochip. Anal. Chem., 73:5777–5783, 2001.

    Article  Google Scholar 

  • B. A. Cola, D. K. Scha er, T. S. Fisher, and M. A. Stremler. A pulsed source-sink fluid mixing device. J. Microelectromech. Sys., 15(1), 2006. In press.

    Google Scholar 

  • D. D’Alessandro, M. Dahleh, and I. Mezić. Control of mixing in fluid flow: a maximum entropy approach. IEEE Trans. Auto. Control, 44(10):1852–1863, 1999.

    Article  MATH  Google Scholar 

  • C. Debouck and P. N. Goodfellow. DNA microarrays in drug discovery and development. Nature Genetics, 21(1 Suppl.):48–50, 1999.

    Article  Google Scholar 

  • D. Erickson, X. Liu, U. Krull, and D. Li: Electrokinetically controlled DNA hybridization microfluidic chip enabling rapid target analysis. Anal. Chem., 76:7269–7277, 2004.

    Article  Google Scholar 

  • J. Evans, D. Liepmann, and A. P. Pisano. Planar laminar mixer. In Proc. 10th Ann. Int. Wrkshp Microelectromech. Sys. (MEMS’ 97), pages 96–101. IEEE, 1997.

    Google Scholar 

  • H. S. Hele-Shaw. The flow of water. Nature, 58:34–36, 1898.

    Article  Google Scholar 

  • M. J. Heller. DNA microarray technology: Devices, systems, and applications. Ann. Rev. Biomed. Eng., 4:129–153, 2002.

    Article  Google Scholar 

  • V. R. Iyer, M. B. Eisen, D. T. Ross, G. Schuler, T. Moore, J. C. F. Lee, J. M. Trent, L. M. Staudt, J. Hudson Jr., M. S. Boguski, D. Lashkari, D. Shalon, D. Botstein, and P. O. Brown. The transcriptional program in the response of human fibroblasts to serum. Science, 283(5398):83–87, 1999.

    Article  Google Scholar 

  • S. W. Jones and H. Aref. Chaotic advection in pulsed source-sink systems. Phys. Fluids, 31(3):469–485, 1988.

    Article  MathSciNet  Google Scholar 

  • H. Lamb. Hydrodynamics. Cambridge University Press, 6th edition, 1932.

    Google Scholar 

  • A. J. Lichtenberg and M. A. Lieberman. Regular and chaotic dynamics. Springer-Verlag, New York, 2nd edition, 1992.

    MATH  Google Scholar 

  • R. H. Liu, R. Lenigk, R. L. Druyor-Sanchez, J. Yang, and P. Grodzinski. Hybridization enhancement using cavitation microstreaming. Anal. Chem., 75(8):1911–1917, 2003.

    Article  Google Scholar 

  • M. K. McQuain, K. Seale, J. Peek, T. Fisher, S. Levy, M. A. Stremler, and F. R. Haselton. Chaotic mixer improves microarray hybridization. Anal. Biochem., 325:215–226, 2004.

    Article  Google Scholar 

  • S. Mohr, G. D. Leikauf, G. Keith, and B. H. Rihn. Microarrays as cancer keys: An array of possibilities. J. Clinical Oncology, 20:3165–3175, 2002.

    Article  Google Scholar 

  • J. H. Ng and L. L. Ilag. Biochips beyond DNA: technologies and applications. Biotech. Ann. Rev., 9:1–149, 2003.

    Article  Google Scholar 

  • J. M. Ottino. The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press, 1989.

    Google Scholar 

  • J. M. Ottino and S. Wiggins. Designing optimal micromixers. Science, 305(5683):485–486, 2004a.

    Article  Google Scholar 

  • J. M. Ottino and S. R. Wiggins. (eds). A theme issue on “Transport and mixing at the microscale”. Phil. Trans. Roy. Soc. London A, 362(1818): 923–1129, 2004b.

    Google Scholar 

  • F. Raynal, F. Plaza, A. Beuf, P. Carrière, E. Souteyrand, J.-R. Martin, J.-P. Cloarec, and M. Cabrera. Study of a chaotic mixing system for DNA chip hybridization chambers. Phys. Fluids, 16(9):L63–L66, 2004.

    Article  Google Scholar 

  • M. Sartor, J. Schwanekamp, D. Halbleib, I. Mohamed, S. Karyala, M. Medvedovic, and C. R. Tomlinson. Microarray results improve significantly as hybridization approaches equilibrium. Biotechniques, 36: 790–796, 2004.

    Google Scholar 

  • M. Schena, D. Shalon, R. W. Davis, and P. O. Brown. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270(5235):467–470, 1995.

    Article  Google Scholar 

  • K. V. Sharp and R. J. Adrian. Transition from laminar to turbulent flow in liquid filled microtubes. Exp. Fluids, 36:741–747, 2004.

    Article  Google Scholar 

  • D. Stoll, J. Bachmann, M. F. Templin, and T. O. Joos. Microarray technology: an increasing variety of screening tools for proteomic research. Drug Disc. Today: Targets, 3(1):24–31, 2004.

    Article  Google Scholar 

  • M. A. Stremler and B. A. Cola. A maximum entropy approach to optimal mixing in a pulsed source-sink flow. Phys. Fluids, 18(011701):4pp., 2006.

    Google Scholar 

  • R. van Beuningen, H. van Damme, P. Boender, N. Bastiaensen, A. Chan, and T. Kievits. Fast and specific hybridization using flow-through microarrays on porous metal oxide. Clin. Chem., 47:1931–1933, 2001.

    Google Scholar 

  • J. Vanderhoeven, K. Pappaert, B. Dutta, G. Baron, and G. Desmet. Exploiting the benefits of miniaturization for the enhancement of DNA microarrays. Electrophoresis, 25:3677–3686, 2004.

    Article  Google Scholar 

  • J. Vanderhoeven, K. Pappaert, B. Dutta, P. Van Hummelen, and G. Desmet. Comparison of a pump-around, a di usion-driven, and a shear-driven system for the hybridization of mouse lung and testis total RNA on microarrays. Electrophoresis, 26:3773–3779, 2005.

    Google Scholar 

  • A. Willse, D. P. Chandler, A. White, M. Protic, D. S. Daly, and S. Wunschel. Comparing bacterial DNA microarray fingerprints. Stat. App. Genetics Molecular Bio., 4(1): art. 19, 36 pp, 2005.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 CISM, Udine

About this chapter

Cite this chapter

Stremler, M.A. (2009). Fluid Mixing Chaotic Advection and Microarray Analysis. In: Cortelezzi, L., Mezić, I. (eds) Analysis and Control of Mixing with an Application to Micro and Macro Flow Processes. CISM International Centre for Mechanical Sciences, vol 510. Springer, Vienna. https://doi.org/10.1007/978-3-211-99346-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99346-0_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99345-3

  • Online ISBN: 978-3-211-99346-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics