Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 510))

Abstract

Three criteria for estimating the quality of mixing are developed. The idea of our approach traces back to the fundamental works of Gibbs, Danckwerts and Welander and consists of using the concept of a ‘coarse grained’ density of the mixed component. Numerical data are presented showing the change in time of the statistical values of the square density and the intensity of segregation for Gibbs’ classical example of fluid mixing. Computation of the measures shows a complete reversibility in spite of irreversibility of some individual points. The coarse-grained representations over an investigation area show a ‘residence place’ for the dyed material at any instant. For study of transport properties of materials in chaotic two-dimensional stirring (1951) matrix method is suggested. The exchange matrix can show transport of patches or particles from any place in the area under consideration to an arbitrary location and time if it happens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • H. Aref. Stirring by chaotic advection. J. Fluid Mech., 143:1–24, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  • H. Aref. The development of chaotic advection. Phys. Fluids A, 14:1315–1325, 2002.

    Article  MathSciNet  Google Scholar 

  • V. I. Arnold and A. Avez. Ergodic Problems of Statistical Mechanics. Benjamin, New York, 1968.

    Google Scholar 

  • S. Beerens, H. Ridderinkhof and J. T. F. Zimmerman. An analytical study of chaotic stirring in tidal areas. In H. Aref and M.S.El Naschie, editors, Chaos Applied to Fluid Mixing. Pergamon Press, 267–285, 1995.

    Google Scholar 

  • A. Ben-Naim. Is mixing a thermodynamic process? Amer. J. Phys., 58:725–733, 1987.

    Article  Google Scholar 

  • J. R. Blake and S. R. Otto. Ciliary propulsion, chaotic filtration and a ‘blinking’ stokeslet. J. Engng Math., 30:151–168, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  • R. S. Brodkey. The Phenomena of Fluid Motions. Addison-Wesley, San Diego, 1967.

    Google Scholar 

  • P. V. Danckwerts. The definition and measurement of some characteristics of mixtures. Appl. Sci. Res. A., 3:279–296, 1952.

    Google Scholar 

  • M. F. Edwards. Laminar flow and distributive mixing. In N. Hardy, M. F. Edwards and A. W. Nienow, editors, Mixing in the Process Industries. Butterworth, Boston, 202–225, 1985.

    Google Scholar 

  • P. Ehrenfest and T. Ehrenfest. Begriffliche Grundlagen der statistischen Auffassung in der Mechanik. In Encykopädie der mathematischen Wissenschaften. Teubner, Berlin, 4, Art. 32, 3–90, 1911.

    Google Scholar 

  • J. W. Gibbs. Elementary Principles in Statistical Mechanics. Scribner, New Haven, 1902.

    MATH  Google Scholar 

  • E. Hopf. On causality, statistics and probability. J. Mathematics Phys., 13:51–102, 1934.

    MATH  Google Scholar 

  • H. F. Irving and R. L. Saxton. Mixing of high viscosity materials. In V. W. Uhl and J. B. Gray, editors, Mixing. Theory and Practice, II. Academic, Palo Alto, 169–224, 1967.

    Google Scholar 

  • S. C. Jana, G. Metcalfe and J. M. Ottino. Experimental and computational studies of mixing in complex Stokes flows: the vortex mixing flow and multicellular cavity flows. J. Fluid Mech., 269:199–246, 1994.

    Article  MathSciNet  Google Scholar 

  • T. S. Krasnopolskaya, V. V. Meleshko, G. W. M. Peters and H. E. H. Meijer. Mixing in Stokes flow in an annular wedge cavity. Eur. J. Mech. B/Fluids, 18:793–822, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • T. S. Krasnopolskaya and V. V. Meleshko. Laminar stirring of fluids. Part 1. Methodology aspects. Applied Hydromechanics, 6:28–40, 2004.

    MathSciNet  Google Scholar 

  • N. S. Krylov. The process of relaxation of statistical systems and the criterion of mechanical instability. In Works on the Foundations of Statistical Physics by Nikolai Sergeevich Krylov. Princeton University Press, Princeton, 193–238, 1979.

    Google Scholar 

  • M. Liu, F. J. Muzzio and R. L. Peskin. Quantification of mixing in apereodic chaotic flows. Chaos, Solitons & Fractals, 4:869–893, 1994.

    Article  MATH  Google Scholar 

  • J. C. Maxwell. On the displacement in a case of fluid motion. Proc. Lond. Math. Soc., 3:82–87, 1870.

    Article  Google Scholar 

  • S. Middleman. Fundamentals of Polymer Processing. McGraw-Hill, New York, 1977.

    Google Scholar 

  • W. B. Morton. On the displacements of the particles and their paths in some cases of two-dimensional motion of a frictionless liquid. Proc. R. Soc. Lond. A, 89:106–124, 1913.

    Article  Google Scholar 

  • J. M. Ottino. The Kinematics of Mixing: Stretching, Chaos and Transport. Cambridge University Press, Cambridge, 1989.

    MATH  Google Scholar 

  • J. M. Ottino. Mixing, chaotic advection, and turbulence. Ann. Rev. Fluid Mech., 22:207–253, 1990.

    Article  MathSciNet  Google Scholar 

  • H. Poincaré. Sur le problème des trois corps et les équations de la dinamique. Acta Mathem., 13:1–270, 1890.

    Google Scholar 

  • L. Sklar. Physics and Chance. Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  • R. S. Spencer and R. M. Wiley. The mixing of very viscous liquids. J. Colloid Sci. 6:133–145, 1951.

    Article  Google Scholar 

  • R. C. Tolman. The Principle of Statistical Mechanics. Oxford University Press, Oxford, 1938.

    Google Scholar 

  • C. L. Tucker. Principles of mixing measurements. In C. Rauwendaal, editor, Mixing in Polymer Processing. Dekker, Boston, 101–127, 1991.

    Google Scholar 

  • P. Welander. Studies of the general development of motion in a two-dimentional ideal fluid. Tellus, 7:141–156, 1955.

    MathSciNet  Google Scholar 

  • E. Zermelo. Referat über Gibbs “statistische Mechanik”. Jahresber. deutsch. Math.-Ver. 15:232–242, 1906.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 CISM, Udine

About this chapter

Cite this chapter

Krasnopolskaya, T., Meleshko, V. (2009). Quality Measures and Transport Properties. In: Cortelezzi, L., Mezić, I. (eds) Analysis and Control of Mixing with an Application to Micro and Macro Flow Processes. CISM International Centre for Mechanical Sciences, vol 510. Springer, Vienna. https://doi.org/10.1007/978-3-211-99346-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99346-0_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99345-3

  • Online ISBN: 978-3-211-99346-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics