Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 510))

Abstract

The aim of these notes is to provide an overview of the different approaches used to address the advection-diffusion equation, viewed as the mathematical setting for studying mixing in laminar incompressible flows. In its beginnings1, i. e. starting from the paper by (1984), the field of laminar mixing was essentially a new playground for physicists, fluid dynamicists and engineers, where the tools of dynamical system theory could be applied.

In a historical perspective, it should be mentioned that the first contributions of methods of chaotic dynamics in laminar flows are Arnold (1965); Henon (1966). For further discussion see Mezic (2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • A. Adrover, S. Cerbelli, and M. Giona. On the interplay between advection and diffusion in closed laminar chaotic flows. J. Phys. Chem., 105: 4908–4916, 2001.

    Google Scholar 

  • S. Agmon. On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math., XV: 110–147, 1962.

    MathSciNet  Google Scholar 

  • S. Agmon. Lectures on elliptic boundary value problems. Van Nostrand, Princeton, 1965.

    MATH  Google Scholar 

  • H. Aref. Stirring by chaotic advection. J. Fluid Mech., 143: 1–21, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Aris, On the dispersion of a solute in a fluid flowing through a tube. Proc. Roy. Soc. A, 235, 67–77, 1956.

    Article  Google Scholar 

  • V.I. Arnold, Sur la topologie des écoulements stationnaires des fluides parfaits. C.R. Acad. Sci. Paris, 261: 17–20, 1965.

    MathSciNet  Google Scholar 

  • V. I. Arnold and A. Avez. Ergodic Problems of Classical Mechanics. Addison-Wesley, Redwood City, 1989.

    MATH  Google Scholar 

  • G. Backus. A class of self-sustaining dissipative spherical dynamos. Annals Phys., 4: 372–447, 1958.

    Article  MATH  MathSciNet  Google Scholar 

  • G. K. Batchelor. Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1 General discussion and the case of small conductivity. J. Fluid Mech., 5: 113–133, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Beigie, A. Leonard, and S. Wiggins. Invariant manifold templates for chaotic advection. Chaos, Solitons & Fractals, 4: 749–868, 1994.

    Article  MATH  Google Scholar 

  • A. Bensoussan, J.-L. Lions, and G. Papanicolau. Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  • R.D. Biggs. Mixing rates in stirred tanks. AIChE J., 9: 636–640, 1963.

    Article  Google Scholar 

  • K.B. Bischoff. A note on boundary conditions for flow reactors. Chem. Eng. Sci., 16: 131–133, 1961.

    Article  Google Scholar 

  • S. Cerbelli, A. Adrover, and M. Giona. Enhanced diffusion regimes in bounded chaotic flows. Phys. Lett. A, 312: 355–362, 2003.

    Article  MathSciNet  Google Scholar 

  • S. Cerbelli, V. Vitacolonna, A. Adrover, and M. Giona. Eigenvalueeigenfunction analysis of infinitely fast reactions and micromixing regimes in regular and chaotic bounded flows. Chem. Eng. Sci., 59: 2125–2144, 2004.

    Article  Google Scholar 

  • S. Chandrasekhar. Stochastic problems in physics and astronomy. Rev. Mod. Phys., 15: 1–89, 1943.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Chella and J. M. Ottino. Fluid Mechanics of Mixing in a Single-Screw Extruder. Ind. End. Chem. Fundam., 24: 170–180, 1985.

    Article  Google Scholar 

  • S. Childress and A. D. Gilbert. Stretch, Twist, Fold: the Fast Dynamo. Springer Verlag, Berlin, 1995.

    MATH  Google Scholar 

  • P. V. Danckwerts. The definition and measurement of some characteristics of mixtures. Appl. Sci. Res. A, 3: 279–296, 1952.

    Google Scholar 

  • P. V. Danckwerts. Continuous flow system-distribution of residence times. Chem. Eng. Sci., 2: 1–13, 1953.

    Article  Google Scholar 

  • P. V. Danckwerts. The effect of incomplete mixing on homogeneous reactions. Chem. Eng. Sci., 8: 93–99, 1958.

    Article  Google Scholar 

  • D. D’Alessandro, M. Dahleh and I. Mezic. Control of mixing in fluid flow: A maximum entropy approach. IEEE Trans. Aut. Control, 44: 1852–1863, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • P. E. Dimotakis and P. L. Miller. Some consequences of boundedness of scalar fluctuations. Phys. Fluids A, 2: 1919–1920, 1990.

    Article  MATH  Google Scholar 

  • T. Dombre, U. Frisch, J.M. Greene, M. Henon, A. Mehr, and A.M. Soward. Chaotic streamlines in the ABC flows. J. Fluid Mech., 167: 353–391, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  • J.-P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys., 57: 617–655, 1985.

    Article  MathSciNet  Google Scholar 

  • W. Ehrfeld, V. Hessel, and H. Löwe. Microreactors. Wiley-VCH, Weinheim, 2004.

    Google Scholar 

  • M. Faierman. On the spectral theory of an elliptic boundary value problem involving an indefinite weight. In I. Gohberg and H. Langer, editors, Operator Theory and Boundary Eigenvalue Problems. Birkhäuser Verlag, Basel, pages 137–154, 1995.

    Google Scholar 

  • A. Fannjang and G. Papanicolau. Convection enhanced diffusion for periodic flows. SIAM J. Appl. Math., 54: 333–408, 1994.

    Article  MathSciNet  Google Scholar 

  • M. J. Feigenbaum. The universal metric properties of nonlinear transformations. J. Stat. Phys., 21: 669–706, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  • D. R. Fereday, P.H. Haynes, A. Wonhas, and J. C. Vassilicos. Scalar variance decay in chaotic advection and Batchelor-regime turbulence. Phys. Rev. E, 65: 035301 I–IV, 2002.

    Article  MathSciNet  Google Scholar 

  • P.K. Feyerabend. Against method, NBL, New York, 1975.

    Google Scholar 

  • C. Foias and G. Prodi. Sur le comportement global des solutions non stationnaires des equations de Navier-Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova, 3: 1–34, 1967.

    MathSciNet  Google Scholar 

  • G. F. Froment and K. B. Bischoff. Chemical Reactor Analysis and Design. John Wiley & Sons, New York, 1979.

    Google Scholar 

  • M. Giona and A. Adrover. Nonuniform Stationary Measure of the Invariant Unstable Foliation in Hamiltonian and Fluid Mixing Systems. Phys. Rev. Lett., 81. 3864–3867, 1998.

    Article  Google Scholar 

  • M. Giona, S. Cerbelli, and A. Adrover. Geometry of reaction interfaces in chaotic flows. Phys. Rev. Lett., 88: 024501 I–IV, 2002.

    Google Scholar 

  • M. Giona, A. Adrover, S. Cerbelli, and V. Vitacolonna. Spectral properties and transport mechanisms of partially chaotic bounded flows in the presence of diffusion. Phys. Rev. Lett., 92: 114101 I–IV, 2004a.

    Article  Google Scholar 

  • M. Giona, S. Cerbelli, and V. Vitacolonna. Universality and imaginary potentials in advection-diffusion equations in closed flows. J. Fluid Mech., 513: 221–237, 2004b.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Giona, V. Vitacolonna, S. Cerbelli, and A. Adrover. Advection-diffusion in non-chaotic closed flows: non-Hermitian operators, universality and localization. Phys. Rev. E, 70: 046224 I–XII, 2004c.

    Article  Google Scholar 

  • M. Hénon. Aur la topologie des lignes de courant das un cas particulier. C.R. Acad. Sci. Paris, 262, 314–316, 1966

    Google Scholar 

  • V. Hessel, S. Hardt, and H. Löwe. Chemical Micro Process Engineering. Wiley-VCH, Weinheim, 2004.

    Book  Google Scholar 

  • V. Hessel, H. Löwe, and F. Schönfeld. Micromixers — a review on passive and active mixing principles. Chem. Eng. Sci., 60: 2479–2501, 2005.

    Article  Google Scholar 

  • A. Iserles, A. Marthinsen, and S.P. Norsett. On the implementation of the method of Magnus series for linear differential equations. BIT Num. Math, 39: 281–304, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Kato. Perturbation Theory for Linear Operators. Springer-Verlag, Berlin, 1980.

    MATH  Google Scholar 

  • D. V. Khakhar, J. G. Franjione, and J. M. Ottino. A case study of chaotic mixing in deterministic flows: the partitioned-pipe mixer, Chem. Eng. Sci., 42: 2909–2926, 1987.

    Article  Google Scholar 

  • K. Kowalski. Methods of Hilbert spaces in the theory of nonlinear dynamical systems. World Scientific, Singapore, 1994.

    MATH  Google Scholar 

  • A. Lasota and M. C. Mackey. Chaos, Fractals and Noise. Springer Verlag, New York, 1994.

    MATH  Google Scholar 

  • W. Liu and G. Haller. Strange eigenmodes and decay of variance in the mixing of diffusive tracers. Physica D, 188: 1–39, 2004a.

    Article  MATH  MathSciNet  Google Scholar 

  • W. Liu and G. Haller. Inertial manifolds and completeness of eigenmodes for unsteady magnetic dynamos. Physica D, 194: 297–319, 2004b.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Liu, F.J. Muzzio, and R.L. Peskin. Quantification of mixing in aperiodic flows. Chaos, Solitons & Fractals, 4: 869–893, 1994a.

    Article  MATH  Google Scholar 

  • M. Liu, R. L. Peskin, F. J. Muzzio, and C. W. Leong. Structure of the Stretching Field in Chaotic Cavity Flows. AIChE J., 40: 1273–1286, 1994b.

    Article  Google Scholar 

  • A.J. Majda and P. R. Kramer. Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena. Phys. Rep. 314: 237–574, 1999.

    Article  MathSciNet  Google Scholar 

  • G. Mathew, I. Mezic, and L. Petzold. A multiscale measure for mixing. Physica D, 211: 23–46, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  • I. Mezic. Chaotic advection in bounded Navier-Stokes flows. J. Fluid Mech., 431: 347–370, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  • F.J. Muzzio and J.M. Ottino. Evolution of a lamellar system with diffusion and reaction. Phys. Rev. Lett., 63: 47–50, 1989.

    Article  Google Scholar 

  • F.J. Muzzio, P.D. Swanson, and J.M. Ottino. The statistics of stretching and stirring in chaotic flows. Phys. Fluid A, 3: 1039–1050, 1991.

    Article  MathSciNet  Google Scholar 

  • N.-T. Nguyen and Z. Wu. Micromixers — a review. J. Micromech Microeng., 15: R1–R16, 2005.

    Article  Google Scholar 

  • A.W. Nienow. On impeller circulation and mixing effectiveness in the turbulent flow regime. Chem. Eng. Sci., 52: 2557–2565, 1997.

    Article  Google Scholar 

  • J.M. Ottino. The kinematics of mixing, stretching, chaos and transport. Cambridge University Press, Cambridge, 1989.

    MATH  Google Scholar 

  • J. M. Ottino, W. E. Ranz, and C. W. Macosko. A lamellar model for the analysis of liquid-liquid mixing. Chem. Eng. Sci., 34: 877–890, 1979.

    Article  Google Scholar 

  • J. M. Ottino and S. Wiggins. Designing Optimal Micromixers. Science, 305: 485–486, 2004.

    Article  Google Scholar 

  • J.R.A. Pearson. A note on the “Danckwerts” boundary conditions for continuous flow reactors. Chem. Eng. Sci., 19: 281–284, 1959.

    Google Scholar 

  • A. Pentek, G. Karolyi, I. Scheuring, T. Tel, Z. Toroczkai, J. Kadtke, and C. Grebogi. Fractality chaos and reactions in imperfectly mixed open hydrodynamical flows. Physica A, 274: 120–131, 1999.

    Article  Google Scholar 

  • A. Pikovsky and O. Popovych. Persistent patterns in determinstic, mixing flows. Europhys. Lett., 61: 625–631, 2003.

    Article  Google Scholar 

  • K. R. Popper. Conjectures and refutations. Routledge and Kegan Paul, London, 1969.

    Google Scholar 

  • W. E. Ranz. Application of a stretch model to mixing, diffusion and reaction in laminar and turbulent flows. AIChE J., 25: 41–47, 1979.

    Article  Google Scholar 

  • M. Reed and B. Simon. Methods of Modern Mathematical Physics I Functional Analysis, Academic Press, Orlando, 1980.

    MATH  Google Scholar 

  • P. J. Roache. Computational Fluid Dynamics. Hermosa Publishers, Albuquerque, 1972.

    MATH  Google Scholar 

  • J. C. Robinson. Infinite-Dimensional Dynamical Systems. Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  • G.R. Sell and Y. You. Dynamics of evolutionary equations. Springer-Verlag, New York, 2002.

    MATH  Google Scholar 

  • S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc., 73: 747–817, 1967.

    Article  MathSciNet  Google Scholar 

  • R. Smith. Entry and exit conditions for flow reactors. IMA J. Appl. Math., 41: 1–20, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  • L. L. Smith, A. J. Majamaki, I. T. Lam, O. Delabroy, A. R. Karagozian, F. E. Marble, and O. I. Smith. Mixing enhancement in a lobed injector. Phys. Fluids, 9: 667–678, 1997.

    Article  Google Scholar 

  • I.M. Sokolov and A. Blumen. Mixing in reaction-diffusion problems. Int. J. Mod. Phys. B, 5: 3127–3164, 1991.

    Article  Google Scholar 

  • T.M. Squires and S.R. Quake. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys., 77: 977–1026, 1995.

    Article  Google Scholar 

  • A.D. Stroock S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone and G.M. Whitesides. Chaotic Mixers for Microchannels. Science, 295, 648–651, 2002.

    Article  Google Scholar 

  • J. Sukhatme and R. T. Pierrehumbert. Decay of passive scalars under the action of single scale smooth velocity fields in bounded two-dimensional domains: from non-self-similar probability distribution functions to self-similar eigenmodes. Phys. Rev. E, 66: 056302 I–XI, 2002.

    MathSciNet  Google Scholar 

  • G. Taylor. Dispersion of soluble matter in a solvent flowing slowly through a tube. Proc. Roy. Soc. A, 219: 186–203, 1953.

    Article  Google Scholar 

  • T. Tel, G. Karolyi, A. Pentek, I. Scheuring, Z. Toroczkai, C. Grebogi, and J. Kadtke. Chaotic advection, diffusion and reactions in open flows. Chaos, 10: 89–98, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Temam. Infinite-dimensional dynamical systems in mechanics and physics. Springer-Verlag, New York, 1997.

    MATH  Google Scholar 

  • J.-L. Thiffeault and S. Childress. Chaotic mixing in a torus map. Chaos, 13: 502–507, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • Z. Toroczkai, G. Karolyi, A. Pentek, and T. Tel. Autocatalytic reactions in systems with hyperbolic mixing: exact results for the active Baker map. J. Phys. A, 34: 5215–5235, 2001.

    MATH  MathSciNet  Google Scholar 

  • V. Toussaint, P. Carriere, and F. Raynal. A numerical Eulerian approach to mixing by chaotic advection. Phys. Fluids, 7: 2587–2600, 1995.

    Article  MATH  Google Scholar 

  • V. Toussaint, P. Carriere, J. Scott, and J.-N. Gence. Spectral decay of a passive scalar in chaotic mixing. Phys. Fluids, 12: 2834–2844, 2000.

    Article  MathSciNet  Google Scholar 

  • P. Walters. An Introduction to Ergodic Theory. Springer Verlag, New York, 1982.

    MATH  Google Scholar 

  • J.F. Wehner, and R.H. Wilhelm. Boundary conditions of flow reactors. Chem. Eng. Sci., 6: 89–93, 1956.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 CISM, Udine

About this chapter

Cite this chapter

Giona, M. (2009). Advection-diffusion in chaotic flows. In: Cortelezzi, L., Mezić, I. (eds) Analysis and Control of Mixing with an Application to Micro and Macro Flow Processes. CISM International Centre for Mechanical Sciences, vol 510. Springer, Vienna. https://doi.org/10.1007/978-3-211-99346-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99346-0_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99345-3

  • Online ISBN: 978-3-211-99346-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics