Skip to main content

Exact Certification in Global Polynomial Optimization Via Rationalizing Sums-Of-Squares

  • Chapter
  • First Online:
Approximate Commutative Algebra

Part of the book series: Texts and Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

Errors in the coefficients due to floating point round-off or through physical measurement can render exact symbolic algorithms unusable. Hybrid symbolic-numeric algorithms compute minimal deformations of those coefficients that yield non-trivial results, e.g. polynomial factorizations or sparse interpolants. The question is: are the computed approximations the globally nearest to the input?

We present a new alternative to numerical optimization, namely the exact validation via symbolic methods of the global minimality of our deformations. Semidefinite programming and Newton refinement are used to compute a numerical sum-of-squares representation, which is converted to an exact rational identity for a nearby rational lower bound. Since the exact certificates leave no doubt, the numeric heuristics need not be fully analyzed. We demonstrate our approach on the approximate GCD, approximate factorization, and Rump’s model problems. The talk covers joint work with Bin Li, Zhengfeng Yang and Lihong Zhi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Xavier Dahan and Éric Schost. Sharp estimates for triangular sets. In Jaime Gutierrez, editor, ISSAC 2004 Proc. 2004 Internat. Symp. Symbolic Algebraic Comput., pages 103–110, New York, N. Y., 2004. ACM Press.

    Google Scholar 

  2. Hazel Everett, Daniel Lazard, Sylvain Lazard, and Mohab Safey El Din. The Voronoi diagram of three lines in r 3. In SoCG ’07: Proceedings of the 23-rd Annual Symposium on Computational Geometry, pages 255–264. ACM, New York, USA, 2007.

    Google Scholar 

  3. G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, Maryland, third edition, 1996.

    MATH  Google Scholar 

  4. Didier Henrion and Jean Bernard Lasserre. GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi. ACM Trans. Math. Softw., 29(2):165–194, 2003.

    Article  MATH  Google Scholar 

  5. David Jeffrey, editor. ISSAC 2008, New York, N. Y., 2008. ACM Press.

    Google Scholar 

  6. Erich Kaltofen, Bin Li, Kartik Sivaramakrishnan, Zhengfeng Yang, and Lihong Zhi. Lower bounds for approximate factorizations via semidefinite programming (extended abstract). In Verschelde and Watt [23], pages 203–204.

    Google Scholar 

  7. Erich Kaltofen, Bin Li, Zhengfeng Yang, and Lihong Zhi. Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars. In Jeffrey [5], pages 155–163.

    Google Scholar 

  8. Erich Kaltofen, Bin Li, Zhengfeng Yang, and Lihong Zhi. Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients, January 2009. Manuscript, 20 pages.

    Google Scholar 

  9. Erich Kaltofen, John May, Zhengfeng Yang, and Lihong Zhi. Approximate factorization of multivariate polynomials using singular value decomposition. J. Symbolic Comput., 43(5):359–376, 2008.

    MATH  MathSciNet  Google Scholar 

  10. Erich Kaltofen, Zhengfeng Yang, and Lihong Zhi. Approximate greatest common divisors of several polynomials with linearly constrained coefficients and singular polynomials. In Jean-Guillaume Dumas, editor, ISSAC MMVI Proc. 2006 Internat. Symp. Symbolic Algebraic Comput., pages 169–176, New York, N. Y., 2006. ACM Press.

    Google Scholar 

  11. Jean B. Lasserre. Global SDP-relaxations in polynomial optimization with sparsity. SIAM J. on Optimization, 17(3):822–843, 2006.

    Article  MATH  Google Scholar 

  12. Bin Li, Jiawang Nie, and Lihong Zhi. Approximate GCDs of polynomials and sparse SOS relaxations. Manuscript, 16 pages. Submitted, 2007.

    Google Scholar 

  13. J. Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB. In Proc. IEEE CCA/ISIC/CACSD Conf., Taipei, Taiwan, 2004. URL: http://control.ee.ethz.ch/joloef/yalmip.php.

  14. M. Mignotte. Some useful bounds. In B. Buchberger, G. Collins, and R. Loos, editors, Computer Algebra, pages 259–263. Springer Verlag, Heidelberg, Germany, 2 edition, 1982.

    Google Scholar 

  15. Kosaku Nagasaka. Towards certified irreducibility testing of bivariate approximate polynomials. In T. Mora, editor, Proc. 2002 Internat. Symp. Symbolic Algebraic Comput. (ISSAC’02), pages 192–199, New York, N. Y., 2002. ACM Press.

    Google Scholar 

  16. Jiawang Nie and Markus Schweighofer. On the complexity of Putinar’s Positivstellensatz. J. Complexity, 23:135–70, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  17. Helfried Peyrl and Pablo A. Parrilo. A Macaulay 2 package for computing sum of squares decompositions of polynomials with rational coefficients. In Verschelde and Watt [23], pages 207–208.

    Google Scholar 

  18. S. Prajna, A. Papachristodoulou, and P. A. Parrilo. SOSTOOLS: Sum of squares optimization toolbox for MATLAB. URL: http://www.cds.caltech.edu/sostools.

  19. Siegfried M. Rump. Global optimization: a model problem, 2006. URL: http://www.ti3.tu-harburg.de/rump/Research/ModelProblem.pdf.

  20. Siegfried M. Rump and H. Sekigawa. The ratio between the Toeplitz and the unstructured condition number, 2006. To appear. URL: http://www.ti3.tu-harburg.de/paper/rump/RuSe06.pdf.

  21. Mohab Safey El Din. Computing the global optimum of a multivariate polynomial over the reals. In Jeffrey [5].

    Google Scholar 

  22. Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11/12:625–653, 1999.

    Google Scholar 

  23. Jan Verschelde and Stephen M. Watt, editors. SNC’07 Proc. 2007 Internat. Workshop on Symbolic-Numeric Comput., New York, N. Y., 2007. ACM Press.

    Google Scholar 

  24. Hayato Waki, Sunyoung Kim, Masakazu Kojima, and Masakazu Muramatsu. Sparse-POP: A sparse semidefinite programming relaxation of polynomial optimization problems. Research Report B-414, Tokyo Institute of Technology, Dept. of Mathematical and Computing Sciences, Oh-Okayama, Meguro 152-8552, Tokyo, Japan, 2005. Available at http://www.is.titech.ac.jp/kojima/SparsePOP.

    Google Scholar 

  25. Henry Wolkowicz, Romesh Saigal, and Lieven (Eds.) Vandenberghe. Handbook of Semidefinite Programming. Kluwer Academic, Boston, 2000.

    Google Scholar 

  26. Ting Zhang, Rong Xiao, and Bican Xia. Real soultion isolation based on interval Krawczyk operator. In Sung il Pae and Hyungju Park, editors, Proc. of the Seventh Asian Symposium on Computer Mathematics, pages 235–237, Seoul, South Korea, 2005. Korea Institute for Advanced Study. Extended abstract.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich Kaltofen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Vienna

About this chapter

Cite this chapter

Kaltofen, E. (2009). Exact Certification in Global Polynomial Optimization Via Rationalizing Sums-Of-Squares. In: Robbiano, L., Abbott, J. (eds) Approximate Commutative Algebra. Texts and Monographs in Symbolic Computation. Springer, Vienna. https://doi.org/10.1007/978-3-211-99314-9_9

Download citation

Publish with us

Policies and ethics