Skip to main content

Regularization and Matrix Computation in Numerical Polynomial Algebra

  • Chapter
  • First Online:
Approximate Commutative Algebra

Part of the book series: Texts and Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

Numerical polynomial algebra emerges as a growing field of study in recent years with a broad spectrum of applications and many robust algorithms. Among the challenges we must face when solving polynomial algebra problems with floating-point arithmetic, the most frequently encountered difficulties include the regularization of ill-posedness and the handling of large matrices. We develop regularization principles for reformulating the ill-posed algebraic problems, derive matrix computations arising in numerical polynomial algebra, as well as subspace strategies that substantially improve computational efficiency by reducing matrix sizes. Those strategies have been successfully applied to numerical polynomial algebra problems such as GCD, factorization, multiplicity structure and elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. L. Allgower, K. Georg, and R. Miranda, The method of resultants for computing real solutions of polynomial systems, SIAM J. Numer. Anal., 29 (1992), pp. 831–844.

    Article  MATH  MathSciNet  Google Scholar 

  2. W. Auzinger and H. J. Stetter, An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations. Proc. of International Conference on Numerical Mathematics Singapore, 1988.

    Google Scholar 

  3. D. J. Bates and J. D. Hauenstein and C. Peterson and A. J. Sommese, A local dimension test for numerically approximate points on algebraic sets, Preprint, 2008.

    Google Scholar 

  4. D. Bates, J. D. Hauenstern, A. J. Sommese, and C. W. Wampler, Bertini: Software for Numerical Algebraic Geometry. http://www.nd.edu/∼sommese/bertini, 2006.

  5. D. Bates, J. D. Hauenstern, A. J. Sommese, and C. W. Wampler, Software for numerical algebraic geometry: A paradigm and progress towards its implementation, in Software for Algebraic Geometry, IMA Volume 148, M. Stillman, N. Takayama, and J. Verschelde, eds., Springer, 2008, pp. 1–14.

    Google Scholar 

  6. D. J. Bates, C. Peterson, and A. J. Sommese, A numerical-symbolic algorithm for computing the multiplicity of a component of an algebraic set, J. of Complexity, 22 (2006), pp. 475–489.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Chèze and A. Galligo, Four lessons on polynomial absolute factorization, in Solving Polynomial Equations: Foundations, Algorithms, and Applications, A. Dickenstein and I. Emiris, eds., vol. 14 of Algorithms and Computation in Mathematics, Springer-Verlag, 2005, pp. 339–392.

    Google Scholar 

  8. G. Chèze and A. Galligo, From an approximate to an exact absolute polynomial factorization, J. of Symbolic Computation, 41 (2006), pp. 862–696.

    Google Scholar 

  9. The CoCoa Team, CoCoA: a system for doi ng Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it.

  10. R. M. Corless, A. Galligo, I. Kotsireas, and S. Watt, A geometric-numeric algorithm for factoring multivariate polynomials. Proc. ISSAC’02, ACM Press, pages 37-45, 2002.

    Google Scholar 

  11. R. M. Corless, P. M. Gianni, B. M. Trager, and S. M. Watt, The singular value decomposition for polynomial systems. Proc. ISSAC ’95, ACM Press, pp 195-207, 1995.

    Google Scholar 

  12. R. M. Corless, M. Giesbrecht, D. Jeffrey, and S. Watt, Approximate polynomial decomposition. Proc. ISSAC’99, ACM Press, pages 213-220, 1999.

    Google Scholar 

  13. R. M. Corless, M. Giesbrecht, M. van Hoeij, I. Kotsireas, and S. Watt, Towards factoring bivariate approximate polynomials. Proc. ISSAC’01, ACM Press, pages 85-92, 2001.

    Google Scholar 

  14. R. M. Corless, S. M. Watt, and L. Zhi, QR factoring to compute the GCD of univariate approximate polynomials, IEEE Trans. Signal Processing, 52 (2003), pp. 3394–3402.

    Article  MathSciNet  Google Scholar 

  15. A. Cuyt and W.-s. Lee, A new algorithm for sparse interpolation of multivariate polynomials, Theoretical Computer Science, Vol. 409, pp 180-185, 2008

    Article  MATH  MathSciNet  Google Scholar 

  16. D. Daney, I. Z. Emiris, Y. Papegay, E. Tsigaridas, and J.-P. Merlet, Calibration of parallel robots: on the elimination of pose-dependent parameters, in Proc. of the first European Conference on Mechanism Science (EuCoMeS), 2006.

    Google Scholar 

  17. B. Dayton and Z. Zeng, Computing the multiplicity structure in solving polynomial systems. Proceedings of ISSAC ’05, ACM Press, pp 116–123, 2005.

    Google Scholar 

  18. J.-P. Dedieu and M. Shub, Newton’s method for over-determined system of equations, Math. Comp., 69 (1999), pp. 1099–1115.

    Article  MathSciNet  Google Scholar 

  19. J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

    Google Scholar 

  20. J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall Series in Computational Mathematics, Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

    MATH  Google Scholar 

  21. I. Z. Emiris, Sparse elimination and application in kinematics, PhD thesis, Computer Science Division, Dept. of Elec. Eng. and Comput. Sci., Univ. of California, Berkeley, 1994.

    Google Scholar 

  22. I. Z. Emiris, A general solver based on sparse resultants, in Proc. PoSSo (Polynomial System Solving) Workshop on Software, 1995, pp. 35–54.

    Google Scholar 

  23. I. Z. Emiris, E. D. Fritzilas, and D. Manocha, Algebraic algorithms for determining structure in biological chemistry, Internatinal J. Quantum Chemistry, 106 (2006), pp. 190–210.

    Article  MATH  Google Scholar 

  24. I. Z. Emiris, A. Galligo, and H. Lombardi, Certified approximate univariate GCDs, J. Pure Appl. Algebra, 117/118 (1997), pp. 229–251.

    Article  MathSciNet  Google Scholar 

  25. I. Z. Emiris and B. Mourrain, Computer algebra methods for studying and computing molecular conformations, Algorithmica, 25 (1999), pp. 372–402.

    Article  MathSciNet  Google Scholar 

  26. W. Fulton, Intersection Theory, Springer Verlag, Berlin, 1984.

    MATH  Google Scholar 

  27. A. Galligo and D. Rupprecht, Semi-numerical determination of irreducible branches of a reduced space curve. Proc. ISSAC’01, ACM Press, pages 137-142, 2001.

    Google Scholar 

  28. A. Galligo and S. Watt, A numerical absolute primality test for bivariate polynomials. Proc. ISSAC’97, ACM Press, pages 217–224, 1997.

    Google Scholar 

  29. S. Gao, Factoring multivariate polynomials via partial differential equations, Math. Comp., 72 (2003), pp. 801–822.

    Article  MATH  MathSciNet  Google Scholar 

  30. S. Gao, E. Kaltofen, J. May, Z. Yang, and L. Zhi, Approximate factorization of multivariate polynomials via differential equations. Proc. ISSAC ’04, ACM Press, pp 167-174, 2004.

    Google Scholar 

  31. T. Gao and T.-Y. Li, MixedVol: A software package for mixed volume computation, ACM Trans. Math. Software, 31 (2005), pp. 555–560.

    Article  MATH  MathSciNet  Google Scholar 

  32. I. Gelfand, M. Kapranov, and A. Zelevinsky, Discriminants, Resultants and Multidimensional determinants, Birkhäuser, Boston, 1994.

    Book  MATH  Google Scholar 

  33. M. Giesbrecht, G. Labahn and W-s. Lee, Symbolic-numeric sparse interpolation of multivariate polynomials, Journal of Symbolic Computation, to appear, 2009.

    Google Scholar 

  34. G. H. Golub and C. F. Van Loan, Matrix Computations, The John Hopkins University Press, Baltimore and London, 3rd ed., 1996.

    MATH  Google Scholar 

  35. Y. Guan and J. Verschelde, PHClab: A MATLAB/Octave interface to PHCpack, in Software for Algebraic Geometry, IMA Volume 148, M. Stillman, N. Takayama, and J. Verschelde, eds., Springer, 2008, pp. 15–32.

    Google Scholar 

  36. J. Hadamard, Sur les problèmes aux dèrivèes partielles et leur signification physique. Princeton University Bulletin, 49–52, 1902.

    Google Scholar 

  37. P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM, 1997.

    Google Scholar 

  38. M. Hitz, E. Kaltofen, and Y. N. Lakshman, Efficient algorithms for computing the nearest polynomial with a real root and related problems. Proc. ISSAC’99, ACM Press, pp 205-212, 1999.

    Google Scholar 

  39. V. Hribernig and H. J. Stetter, Detection and validation of clusters of polynomial zeros, J. Symb. Comput., 24 (1997), pp. 667–681.

    Article  MATH  MathSciNet  Google Scholar 

  40. Y. Huang, W. Wu, H. Stetter, and L. Zhi, Pseudofactors of multivariate polynomials. Proc. ISSAC ’00, ACM Press, pp 161-168, 2000.

    Google Scholar 

  41. C.-P. Jeannerod and G. Labahn, The SNAP package for arithemetic with numeric polynomials. In International Congress of Mathematical Software, World Scientific, pages 61-71, 2002.

    Google Scholar 

  42. G. F. Jónsson and S. A. Vavasis, Accurate solution of polynomial equations using Macaulay resultant matrices, Math. Comp., 74 (2004), pp. 221–262.

    Article  Google Scholar 

  43. W. Kahan, Conserving confluence curbs ill-condition. Technical Report 6, Computer Science, University of California, Berkeley, 1972.

    Google Scholar 

  44. E. Kaltofen, Challenges of symbolic computation: my favorite open problems, J. Symb. Comput., 29 (2000), pp. 161–168.

    Article  MathSciNet  Google Scholar 

  45. E. Kaltofen, B. Li, Z. Yang, and L. Zhi, Exact certification of global optimality of approximate factorization via rationalizing sums-of-squares with floating point scalars, Proc. ISSAC ’08, ACM Press, pp 155-163, 2008.

    Google Scholar 

  46. E. Kaltofen and J. May, On approximate irreducibility of polynomials in several variables. Proc. ISSAC ’03, ACM Press, pp 161-168, 2003.

    Google Scholar 

  47. E. Kaltofen, J. May, Z. Yang, and L. Zhi, Structured low rank approximation of Sylvester matrix, in Symbolic-Numeric Computation, Trends in Mathematics, D. Wang and L. Zhi, editors, Birkhäuser Verlag, Basel, Switzerland, (2007), pp. 69–83.

    Chapter  Google Scholar 

  48. E. Kaltofen, J. May, Z. Yang, and L. Zhi, Approximate factorization of multivariate polynomials using singular value decomposition, J. of Symbolic Computation, 43 (2008), pp. 359–376.

    Google Scholar 

  49. E. Kaltofen, Z. Yang, and L. Zhi, Structured low rank approximation of a Sylvester matrix, Symbolic-Numeric Computation, D. Wang and L. Zhi, Eds, Trend in Mathematics, Birkhäuser Verlag Basel/Switzerland, pp. 69-83, 2006

    Google Scholar 

  50. E. Kaltofen, Z. Yang, and L. Zhi, Approximate greatest common divisor of several polynomials with linearly constrained coefficients and singular polynomials. Proc. ISSAC’06, ACM Press, pp 169–176, 2006.

    Google Scholar 

  51. E. Kaltofen, Z. Yang, and L. Zhi, On probabilistic analysis of randomization in hybrid symbolic-numeric algorithms, SNC’07 Proc. 2007 Internat. Workshop on Symbolic-Numeric Comput. pp. 11-17, 2007.

    Google Scholar 

  52. N. K. Karmarkar and Y. N. Lakshman, Approximate polynomial greatest common divisors and nearest singular polynomials. Proc. ISSAC’96, pp 35-42, ACM Press, 1996.

    Google Scholar 

  53. N. K. Karmarkar and Y. N. Lakshman, On approximate polynomial greatest common divisors, J. Symb. Comput., 26 (1998), pp. 653–666.

    Google Scholar 

  54. H. Kobayashi, H. Suzuki, and Y. Sakai, Numerical calculation of the multiplicity of a solution to algebraic equations, Math. Comp., 67 (1998), pp. 257–270.

    Article  MATH  MathSciNet  Google Scholar 

  55. M. Kreuzer and L. Robbiano, Computational Commutative Algebra 1, Springer Verlag, Heidelberg, 2000.

    Book  Google Scholar 

  56. M. Kreuzer and L. Robbiano, Computational Commutative Algebra 2, Springer Verlag, Heidelberg, 2000.

    Google Scholar 

  57. T.-Y. Li, Solving polynomial systems by the homotopy continuation method, Handbook of Numerical Analysis, XI, edited by P. G. Ciarlet, North-Holland, Amsterdam (2003), pp. 209–304.

    Chapter  Google Scholar 

  58. T.-Y. Li. Private communication, 2006.

    Google Scholar 

  59. T. Y. Li and Z. Zeng, A rank-revealing method with updating, downdating and applications, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 918–946.

    Article  MATH  MathSciNet  Google Scholar 

  60. F. S. Macaulay, The Algebraic Theory of Modular Systems, Cambridge Univ. Press, London, 1916.

    MATH  Google Scholar 

  61. D. Manocha and S. Krishnan, Solving algebraic systems using matrix computations, Communication in Computer Algebra, 30 (1996), pp. 4–21.

    MATH  Google Scholar 

  62. M. G. Marinari, T. Mora, and H. M. Möller, On multiplicities in polynomial system solving, Trans. AMS, 348 (1996), pp. 3283–3321.

    Article  MATH  Google Scholar 

  63. Åke Björck, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.

    Google Scholar 

  64. T. Mora, Solving Polyonmial Equation Systems II, Cambridge Univ. Press, London, 2004.

    Google Scholar 

  65. B. Mourrain, Isolated points, duality and residues, J. of Pure and Applied Algebra, 117 & 118 (1996), pp. 469–493. Special issue for the Proc. of the 4th Int. Symp. on Effective Methods in Algebraic Geometry (MEGA).

    MathSciNet  Google Scholar 

  66. B. Mourrain and J.-P. Pavone, SYNAPS, a library for dedicated applications in symbolic numeric computing, in Software for Algebraic Geometry, IMA Volume 148, M. Stillman, N. Takayama, and J. Verschelde, eds., Springer, 2008, pp. 81–100.

    Google Scholar 

  67. M.-T. Nada and T. Sasaki, Approximate GCD and its application to ill-conditioned algebraic equations, J. Comput. Appl. Math., 38 (1991), pp. 335–351.

    Article  MathSciNet  Google Scholar 

  68. V. Y. Pan, Numerical computation of a polynomial GCD and extensions, Information and Computation, 167 (2001), pp. 71–85.

    Article  MATH  MathSciNet  Google Scholar 

  69. S. Pillai and B. Liang, Blind image deconvolution using GCD approach, IEEE Trans. Image Processing, 8 (1999), pp. 202–219.

    Article  Google Scholar 

  70. G. Reid and L. Zhi, Solving nonlinear polynomial systems. Proc. international conference on polynomial system solving, pp. 50-53, 2004.

    Google Scholar 

  71. W. Ruppert, Reducibility of polynomials f(x,y) modulo p, J. Number Theory, 77 (1999), pp. 62–70.

    Article  MATH  MathSciNet  Google Scholar 

  72. D. Rupprecht, An algorithm for computing certified approximate GCD of n univariate polynomials, J. Pure and Appl. Alg., 139 (1999), pp. 255–284.

    Article  MATH  MathSciNet  Google Scholar 

  73. T. Sasaki, Approximate multivariate polynomial factorization based on zero-sum relations. Proc. ISSAC’01, ACM Press, pp 284-291, 2001.

    Google Scholar 

  74. T. Sasaki, T. Saito, and T. Hilano, Analysis of approximate factorization algorithm I, Japan J. Industrial and Applied Math, 9 (1992), pp. 351–368.

    Article  MATH  MathSciNet  Google Scholar 

  75. T. Sasaki, T. Saito, and T. Hilano, A unified method for multivariate polynomial factorization, Japan J. Industrial and Applied Math, 10 (1993), pp. 21–39.

    Google Scholar 

  76. T. Sasaki, M. Suzuki, M. Kolar, and M. Sasaki, Approximate factorization of multivariate polynomials and absolute irreducibility testing, Japan J. Industrial and Applied Math, 8 (1991), pp. 357–375.

    Article  MATH  MathSciNet  Google Scholar 

  77. A. Schönhage, Quasi-GCD computations, J. Complexity, 1 (1985), pp. 118–137.

    Article  MATH  MathSciNet  Google Scholar 

  78. A. J. Sommese, J. Verschelde, and C. W. Wampler, Numerical irreducible decomposition using PHCpack. In Algebra, Geometry and Software Systems, edited by M. Joswig et al, Springer-Verlag 2003, 109-130.

    Google Scholar 

  79. A. J. Sommese, J. Verschelde, and C. W. Wampler, Numerical irreducible decomposition using projections from points on the components. In J. Symbolic Computation: Solving Equations in Algebra, Geometry and Engineering, volumn 286 of Comtemporary Mathematics, edited by E.L. Green et al, pages 37-51, AMS 2001.

    Google Scholar 

  80. A. J. Sommese, J. Verschelde, and C. W. Wampler, Numerical factorization of multivariate complex polynomials, Theoretical Computer Science, 315 (2003), pp. 651–669.

    Google Scholar 

  81. A. J. Sommese, J. Verschelde, and C. W. Wampler, Introduction to numerical algebraic geometry, in Solving Polynomial Equations, A. Dickenstein and I. Z. Emiris, eds., Springer-Verlag Berlin Heidelberg, 2005, pp. 301–337.

    Google Scholar 

  82. A. J. Sommese and C. W. Wampler, The Numerical Solution of Systems of Polynomials, World Scientific Pub., Hackensack, NJ, 2005.

    Book  MATH  Google Scholar 

  83. H. J. Stetter, Matrix eigenproblems are at the heart of polynomial system solving, ACM SIGSAM Bulletin, 30 (1996), pp. 22–25.

    Article  MATH  Google Scholar 

  84. H. J. Stetter, Numerical Polynomial Algebra, SIAM, 2004.

    Google Scholar 

  85. G. W. Stewart, Matrix Algorithms, Volume I, Basic Decompositions, SIAM, Philadelphia, 1998.

    Google Scholar 

  86. M. Stillman, N. Takayama, and J. Verschelde, eds., Software for Algebraic Geometry, vol. 148 of The IMA Volumes in Mathematics and its Applications, Springer, 2008.

    Google Scholar 

  87. H.-J. Su, C. W. Wampler, and J. McCarthy, Geometric design of cylindric PRS serial chains, ASME J. Mech. Design, 126 (2004), pp. 269–277.

    Article  Google Scholar 

  88. G. H. Thallinger, Analysis of Zero Clusters in Multivariate Polynomial Systems. Diploma Thesis, Tech. Univ. Vienna, 1996.

    Google Scholar 

  89. J. Verschelde, Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Software, (1999), pp. 251–276.

    Google Scholar 

  90. C. W. Wampler, Displacement analysis of spherical mechanisms having three or fewer loops, ASME J. Mech. Design, 126 (2004), pp. 93–100.

    Article  Google Scholar 

  91. C. W. Wampler, Solving the kinematics of planar mechanisms by Dixon determinant and a complex-plane formulation, ASME J. Mech. Design, 123 (2004), pp. 382–387.

    Google Scholar 

  92. P.-Å. Wedin, Perturbation bounds in connection with singular value decomposition, BIT, 12 (1972), pp. 99–111.

    Article  MATH  MathSciNet  Google Scholar 

  93. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, New York, 1965.

    MATH  Google Scholar 

  94. X. Wu and L. Zhi, Computing the multiplicity structure from geometric involutive form. Proc. ISSAC’08, ACM Press, pages 325–332, 2008.

    Google Scholar 

  95. Z. Zeng, A polynomial elimination method for numerical computation. Theoretical Computer Science, Vol. 409, pp. 318-331, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  96. Z. Zeng, The approximate GCD of inexact polynomials. Part I. to appear.

    Google Scholar 

  97. Z. Zeng, Algorithm 835: MultRoot – a Matlab package for computing polynomial roots and multiplicities, ACM Trans. Math. Software, 30 (2004), pp. 218–235.

    Google Scholar 

  98. Z. Zeng, Computing multiple roots of inexact polynomials, Math. Comp., 74 (2005), pp. 869–903.

    Google Scholar 

  99. Z. Zeng, ApaTools: A Maple and Matlab toolbox for approximate polynomial algebra, in Software for Algebraic Geometry, IMA Volume 148, M. Stillman, N. Takayama, and J. Verschelde, eds., Springer, 2008, pp. 149–167.

    Google Scholar 

  100. Z. Zeng, The closedness subspace method for computing the multiplicity structure of a polynomial system, to appear: Contemporary Mathematics series, American Mathematical Society, 2009.

    Google Scholar 

  101. Z. Zeng, The approximate irreducible factorization of a univariate polynomial. Revisited, preprint, 2009.

    Google Scholar 

  102. Z. Zeng and B. Dayton, The approximate GCD of inexact polynomials. II: A multivariate algorithm. Proceedings of ISSAC’04, ACM Press, pp. 320-327. (2006).

    Google Scholar 

  103. Z. Zeng and T. Y. Li, A numerical method for computing the Jordan Canonical Form. Preprint, 2007.

    Google Scholar 

  104. L. Zhi, Displacement structure in computing approximate GCD of univariate polynomials. In Proc. Sixth Asian Symposium on Computer Mathematics (ASCM 2003), Z. Li and W. Sit, Eds, vol. 10 of Lecture Notes Series on Computing World Scientific, pp. 288-298, 2003.

    Google Scholar 

  105. R.E. Zipple, Probabilistic algorithms for sparse polynomials, Proc. EUROSAM ’79, Springer Lec. Notes Comp. Sci., 72, pp. 216-226, 1979.

    Google Scholar 

Download references

Acknowledgements

The author is supported in part by the National Science Foundation of U.S. under Grants DMS-0412003 and DMS-0715127. The author thanks Hans Stetter for providing his student’s thesis [88], and Erich Kaltofen for his comment as well as several references in §5.4.2.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Vienna

About this chapter

Cite this chapter

Zeng, Z. (2009). Regularization and Matrix Computation in Numerical Polynomial Algebra. In: Robbiano, L., Abbott, J. (eds) Approximate Commutative Algebra. Texts and Monographs in Symbolic Computation. Springer, Vienna. https://doi.org/10.1007/978-3-211-99314-9_5

Download citation

Publish with us

Policies and ethics