Skip to main content

Funktionelle Bildgebung des vestibulären Systems

  • Conference paper
Hören und Gleichgewicht
  • 1496 Accesses

Zusammenfassung

Die funktionelle Magnetresonanztomographie (fMRT) des menschlichen Gehirns ist eine zunehmend auch in der klinischen Diagnostik eingesetzte Methode, die es ermöglicht, durch definierte Stimuli angeregte Hirnareale zu lokalisieren. So sind mittlerweile die Hirnaktivierungsmuster für verschiedene sensorische und motorische Stimulationen bekannt. Die “normalen“ Aktivierungsmuster von Gesunden können jetzt mit denen von Patienten mit umschriebenen Erkrankungen verglichen werden. So kann zum Beispiel vor einer neurochirurgischen Tumorexstirpation genau festgestellt werden, wohin ein dem Hirntumor benachbartes Sprachzentrum verlagert wurde, um es beim Eingriff zu schonen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Arbusow V, Schulz P, Strupp M, Dieterich M, Brandt T (1999) Distribution of herpes simplex virus type I in human geniculate and vestibular ganglia: implications for vestibular neuritis. Ann Neurol 46: 416–419

    Article  PubMed  CAS  Google Scholar 

  2. Arbusow V, Theil D, Schulz P, Pfeiffer M, Mascolo A, Brandt T (2003) Distribution of HSV-1 in Human Geniculate and Vestibular Ganglia: Implications for Vestibular Neuritis. Ann NY Acad Sci 1004: 409–413

    Article  Google Scholar 

  3. Arbusow V, Theil D, Strupp M, Mascolo A, Brandt T (2000) HSV-1 not only in human vestibular ganglia but also in the vestibular labyrinth. Audiol Neuro Otol 6: 259–262

    Article  Google Scholar 

  4. Baloh RW (2003) Vestibular neuritis. New Engl J Med 348: 1027–1032

    Article  PubMed  Google Scholar 

  5. Baloh RW, Ishyama A, Wackym PA, Honrubia V (1996) Vestibular neuritis: clinical-pathologic correlation. Otolaryngol Head Neck Surg 114: 586–592

    Article  PubMed  CAS  Google Scholar 

  6. Bense S, Bartenstein P, Lochmann M, Schlindwein P, Brandt T, Dieterich M (2004a) Metabolic changes in vestibular and visual cortices in acute vestibular neuritis. Ann Neurol 56: 624–630

    Article  PubMed  Google Scholar 

  7. Bense S, Deutschländer A, Stephan T, Bartenstein P, Schwaiger M, Brandt Th, Dieterich M (2004b) Preserved visual-vestibular interaction in patients with bilateral vestibular failure. Neurology 63: 122–128

    PubMed  CAS  Google Scholar 

  8. Bense S, Bartenstein P, Lutz S, Stephan T, Schwaiger M, Brandt T, Dieterich M (2003) Three determinants of vestibular hemispheric dominance during caloric stimulation. Ann N Y Acad Sci 1004: 440–445

    Article  Google Scholar 

  9. Bense S, Stephan T, Yousry TA, Brandt T, Dieterich M (2001) Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI) J Neurophysiol 85: 886–899

    PubMed  CAS  Google Scholar 

  10. Brandt T, Dieterich M (1999) The vestibular cortex. Its locations, functions, and disorders. Ann N Y Acad Sci 871: 293–312

    Article  PubMed  CAS  Google Scholar 

  11. Brandt T, Dieterich M, Strupp M (2003) Vertigo — Leitsymptom Schwindel. Darmstadt: Steinkopff

    Google Scholar 

  12. Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction: visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121: 1749–1758

    Article  PubMed  Google Scholar 

  13. Dieterich M (2008) Veränderungen im Kortex nach peripher-und zentral-vestibulären Läsionen. In: Der Gleichgewichtssinn. Neues aus Forschung und Klinik. 6. Henning Symposium. H. Scherer (Hrsg). Springer, Wien, New York: 117

    Google Scholar 

  14. Dieterich M (2007) Functional brain imaging: a window into the visuo-vestibular systems. Curr Opin Neurol 20: 12–18

    Article  PubMed  Google Scholar 

  15. Dieterich M, Brandt T (2008) Functional imaging of peripheral and central vestibular disorders. Brain 131: 2538–2552

    Article  PubMed  Google Scholar 

  16. Dieterich M, Bauermann T, Best C, Stoeter P, Schlindwein P (2007) Evidence for cortical visual substitution of chronic bilateral vestibular failure (an fMRI study). Brain 30: 2108–2116

    Article  Google Scholar 

  17. Dieterich M, Bense S, Lutz S, Drzezga A, Stephan T, Brandt T, Bartenstein P (2003) Dominance for vestbular cortical function in the non-dominant hemisphere. Cerebral Cortex 13(9): 994–1007

    Article  PubMed  CAS  Google Scholar 

  18. Dieterich M, Bucher SF, Seelos KC, Brandt T (1998) Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance: an fMRI study. Brain 121: 1479–1495

    Article  PubMed  Google Scholar 

  19. Fasold O, von Brevern M, Kuhberg M, Ploner CJ, Villringer A, Lempert T, Wenzel R (2002) Human vestibular cortex as identified with caloric stimulation in functional magnetic resonance imaging. NeuroImage 17: 1384–1393

    Article  PubMed  Google Scholar 

  20. Grüsser OJ, Pause M, Schreiter U (1990a) Localization and responses of neurons in the parieto-insular cortex of awake monkeys (Macaca fascicularis). J Physiol (Lond) 430: 537–557

    PubMed  Google Scholar 

  21. Grüsser OJ, Pause M, Schreiter U (1990b) Vestibular neurones in the parieto-insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. J Physiol (Lond) 430: 559–583

    PubMed  Google Scholar 

  22. Guldin WO, Grüsser OJ (1996) The anatomy of the vestibular cortices of primates. In: Col-lard M, Jeannerod M, Christen Y (Eds.), Le cortex vestibulaire. Editions IRVINN. Ipsen, Paris: 17–26

    Google Scholar 

  23. Janzen J, Schlindwein P, Bense S, Bauermann T, Vucurevic G, Stoeter P, Dieterich M (2008) Neural correlates of hemispheric dominance and ipsilaterality within the vestibular system. NeuroImage 42(4): 1508–1518

    Article  PubMed  CAS  Google Scholar 

  24. Lobel E, Kleine JF, Le Bihan D, Leroy-Willig A, Berthoz A (1998) Functional MRI of galvanic vestibular stimulation. J Neurophysiol 80: 2699–2709

    PubMed  CAS  Google Scholar 

  25. Mast FW, Merfeld DM, Kosslyn SM (2006) Visual mental imagery during caloric vestibular stimulation. Neuropsychologia 44(1): 101–109

    Article  PubMed  Google Scholar 

  26. Nadol JB Jr (1995) Vestibular neuritis. Otolaryngol Head Neck Surg 112: 162–172

    Article  PubMed  Google Scholar 

  27. Schuknecht HF (1993) Pathology of the ear. Philadelphia: Lea & Febinger

    Google Scholar 

  28. Schuknecht HF, Kitamura K (1981) Vestibular neuritis. Ann Otol Rhinol Otolaryngol 90,Suppl 78: 1–19

    CAS  Google Scholar 

  29. Sekitani T, Imate Y, Noguchi T, Inokuma T (1993) Vestibular neuronitis: epidemiological survey by questionnaire in Japan. Acta Otolaryngol (Stockh) Suppl 503: 9–12

    Article  CAS  Google Scholar 

  30. Stephan T, Deutschländer A, Nolte A, Schneider E, Wiesmann M, Brandt T, Dieterich M (2005) FMRI of galvanic vestibular stimulation with alternating currents at different frequencies. NeuroImage 26: 721–732

    Article  PubMed  Google Scholar 

  31. Suzuki M, Kitano H, Ito R, Kitanishi T, Yazawa Y, Ogawa T, Shiino A, Kitajima K (2001) Cortical and subcortical vestibular response to caloric stimulation detected by functional magnetic resonance imaging. Cognitive Brain Research 12: 441–449

    Article  PubMed  CAS  Google Scholar 

  32. Theil D, Arbusow V, Derfuss T, Strupp M, Pfeiffer M, Mascolo A, Brandt T (2001) Prevalence of HSV-1 LAT in human trigeminal, geniculate, and vestibular ganglia and its implication for cranial nerve syndromes. Brain Pathol 11: 408–413

    Article  PubMed  CAS  Google Scholar 

  33. Wenzel R, Bartenstein P, Dieterich M, Danek A, Weindl A, Minoshima S, Ziegler S, Schwaiger M, Brandt T (1996) Deactivation of human visual cortex during involuntary ocular oscillations. A PET activation study. Brain 119: 101–110

    Google Scholar 

  34. Zingler VC, Cnyrim C, Jahn K et al. (2007) Causative factors and epidemiology of bilateral vestibulopathy in 255 patients. Ann Neurol 61: 524–532

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this paper

Cite this paper

Dieterich, M. (2010). Funktionelle Bildgebung des vestibulären Systems. In: Plinkert, P.K., Klingmann, C. (eds) Hören und Gleichgewicht. Springer, Vienna. https://doi.org/10.1007/978-3-211-99270-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99270-8_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99269-2

  • Online ISBN: 978-3-211-99270-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics