Skip to main content

Grundlagen des Hör- und Gleichgewichtssystems

  • Conference paper
Hören und Gleichgewicht
  • 1643 Accesses

Zusammenfassung

Unser Innenohr umfasst dezidierte vestibuläre und auditorsiche Sinnesorgane für die Messung von Gravitation, Dreh-Beschleunigung, und Schall [24], [13]. Im Herzen dieser Organe sitzen spezialisierte mechanosensorische Zellen, die so genannten Haarzellen, welche durch Gravitation, Dreh-Beschleunigung bzw. Schall ausgelöste Auslenkungen ihrer sensorischen Haarbündel in elektrische Antworten wandeln [26]. Der genetische Modellorganismus Drosophila melanogaster, die Frucht- oder Taufiege, besitzt weder Haarzellen noch ein Innenohr im engeren Sinne, ist aber wie wir in der Lage, Schall und Gravitation zu messen [31]. Neuere Untersuchungen haben verblüffende funktionale und genetische Parallelen zwischen Hör- und Gravitationssinn bei Mensch und Fliege aufgedeckt, die Letztere für die Analyse grundlegender Mechanismen des Hörens und Gravitationssinns prädestinieren [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Albert JT, Nadrowski B, Göpfert MC (2007) Mechanical signatures of transducer gating in the Drosophila ear. Curr Biol 17: 1000–1006

    Article  PubMed  CAS  Google Scholar 

  2. Ashmore J, Gale JE (2004) The cochlear amplifer. Curr Biol 14: R403–R404

    Article  PubMed  CAS  Google Scholar 

  3. Beckingham KM, Texada MJ, Baker DA, Munjaal R, Armstrong JD (2005) Genetics of graviperception in animals. Adv Genet 55: 105–145

    Article  PubMed  CAS  Google Scholar 

  4. Bennet-Clark HC (1984) A particle velocity microphone for the song of small insects and other acoustic measurements. J Exp Biol 108: 459–463

    Google Scholar 

  5. Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284: 1837–1841

    Article  PubMed  CAS  Google Scholar 

  6. Corey DP (2006) What is the hair cell transduction channel? J Physiol 576: 23–28

    Article  PubMed  CAS  Google Scholar 

  7. Dallos P, Fakler B (2002) Prestin, a new type of motor protein. Nat Rev Mol Cell Biol 3: 104–111

    Article  PubMed  CAS  Google Scholar 

  8. Davis H (1983) An active process in cochlear mechanics. Hear Res 9: 79–90

    Article  PubMed  CAS  Google Scholar 

  9. Dobzhansky T (1972) Genetics and the diversity of behavior. American Psychologist 27: 523–530

    Article  PubMed  CAS  Google Scholar 

  10. Eberl DF, Duyk GM and Perrimon N (1997) A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 94: 14837–14842

    Article  PubMed  CAS  Google Scholar 

  11. Erwin DH, Davidson EH2 (2002) The last common bilaterian ancestor. Development 129: 3021–3032

    PubMed  CAS  Google Scholar 

  12. Ewing AG (1978) The antenna of Drosophila as a love song receptor. Physiol Entomol 3, 33–36

    Article  Google Scholar 

  13. Goldberg ME, Hudspeth AJ (2000) The vestibular system. In: Kandel ER, Schwartz JH, Jessell TM (Hrsg) Principles of Neural Science. McGraw-Hill, New York, S 801–815

    Google Scholar 

  14. Göpfert MC (2007) Drosophila-Antenne gewährt Einblicke in grundlegende Aspekte des Hörens Neuroforum 4/07: 122–126

    Google Scholar 

  15. Göpfert MC, Robert D (2001) Turning the key on Drosophila audition. Nature 411: 908

    Article  PubMed  Google Scholar 

  16. Göpfert MC, Robert D (2002) The mechanical basis of Drosophila audition. J Exp Biol 205: 1199–1208

    PubMed  Google Scholar 

  17. Göpfert MC, Robert D (2003) Motion generation by Drosophila mechanosensory neurons. Proc Natl Acad Sci USA 100: 5514–5519

    Article  PubMed  CAS  Google Scholar 

  18. Göpfert MC, Stocker H, Robert D (2002) atonal is required for exoskeletal joint formation in the Drosophila auditory system. Dev Dynam 225: 106–109

    Article  CAS  Google Scholar 

  19. Göpfert MC, Humphris ADL, Albert JT, Robert D, Hendrich O (2005) Power gain exhibited by motile mechanosensory neurons in Drosophila ears. Proc Natl Acad Sci USA 102: 325–330

    Article  PubMed  CAS  Google Scholar 

  20. Göpfert MC, Albert JT, Nadrowksi B, Kamikouchi, A (2006) Specifcation of auditory sensitivity by Drosophila TRP channels. Nature Neurosci 9: 999–1000

    Article  PubMed  CAS  Google Scholar 

  21. Greenspan RJ (2008) The origins of behavioral genetics. Curr Biol 18: R192–R198

    Article  PubMed  CAS  Google Scholar 

  22. Hassan BA, Bellen HJ (2000) Doing the Math: is the mouse a good model system for fly development? Genes Dev 14: 1852–1865

    PubMed  CAS  Google Scholar 

  23. Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell, Neuron 1: 189–199

    Article  PubMed  CAS  Google Scholar 

  24. Hudspeth AJ (2000a) Hearing. In: Kandel ER, Schwartz JH, Jessell TM (Hrsg) Principles of Neural Science. McGraw-Hill, New York, S 590–613

    Google Scholar 

  25. Hudspeth AJ (1989) How the ear’s works work. Nature 341: 397–404

    Article  PubMed  CAS  Google Scholar 

  26. Hudspeth AJ (2000b) Sensory transduction in the ear. In: Kandel ER, Schwartz JH, Jessell TM (Hrsg) Principles of Neural Science. McGraw-Hill, New York, S 614–624

    Google Scholar 

  27. Hudspeth AJ (2008) Making an effort to listen: mechanical amplifcation in the ear. Neuron. 59: 530–545

    Article  PubMed  CAS  Google Scholar 

  28. Jarman AP, Grau Y, Jan LY, Jan YN (1993) atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73: 1307–1321

    Article  PubMed  CAS  Google Scholar 

  29. Kamikouchi A, Shimada T, Ito K (2006) Comprehensive classifcation of the auditory sensory projections in the brain of the fruit fly Drosophila melanogaster. J Comp Neurol 499: 317–356

    Article  PubMed  Google Scholar 

  30. Kamikouchi A, Inagaki HK, Effertz T, Hendrich O, Fiala A, Göpfert MC and Ito K (2009) The neural basis of Drosophila gravity-sensing and hearing. Nature 458: 165–171

    Article  PubMed  CAS  Google Scholar 

  31. Kernan MJ (2007) Mechanotransduction and auditory transduction in Drosophila. Pflügers Arch. 454: 703–720

    Article  PubMed  CAS  Google Scholar 

  32. LeMasurier M, Gillespie PG (2005) Hair-cell mechanotransduction and cochlear amplifcation. Neuron. 48: 403–415

    Article  PubMed  CAS  Google Scholar 

  33. Nadrowksi B, Albert JT, Göpfert MC (2008) Transducer-based force generation explains active process in Drosophila hearing. Curr Biol 18: 1000–1006

    Google Scholar 

  34. Stoop R, Kern A, Göpfert MC, Smirnov DA, Taras D, Bezrucko BB (2006) A generalization of the van-der-Pol oscillator underlies active signal amplifcation in Drosophila hearing. Eur Biophys J 35: 511–516

    Article  PubMed  CAS  Google Scholar 

  35. Walker RG, Willingham AT, Zuker CS (2000) A Drosophila Mechanosensory Transduction Channel. Science 287: 2229–2234

    Article  PubMed  CAS  Google Scholar 

  36. Wang VY, Hassan BA, Bellen HJ, Zoghbi HY (2002) Drosophila atonal fully rescues the phenotype of Math1 null mice: new functions evolve in new cellular contexts. Curr Biol. 12: 1611–1616

    Article  PubMed  CAS  Google Scholar 

  37. Weber T, Göpfert MC, Winter H, Zimmermann U, Kohler H, Meier A, Hendrich O, Rohbock K, Robert D, Knipper M (2003) Expression of prestin-homologous solute carrier (SLC26) in auditory organs of nonmammalian vertebrates and insects. Proc Natl Acad Sci USA 100, 7690–7695

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this paper

Cite this paper

Senthilan, P., Lu, Q., Göpfert, M.C. (2010). Grundlagen des Hör- und Gleichgewichtssystems. In: Plinkert, P.K., Klingmann, C. (eds) Hören und Gleichgewicht. Springer, Vienna. https://doi.org/10.1007/978-3-211-99270-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99270-8_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99269-2

  • Online ISBN: 978-3-211-99270-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics