Advertisement

Mixed Finite Element Methods - Theory and Discretization

  • P. Wriggers
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 509)

Abstract

This contribution is concerned with the formulation of mixed finite elements discretization schemes for nonlinear problems of solid mechanics. Thus continuum mechanics for solids is described in the first section to provide the necessary background for the numerical method. This includes necessary kinematical relations as well as the balance laws with their weak forms and the constitutive equations. The second section then describes mixed discretization schemes which can be applied to simulate nonlinear elastic problems including finite deformations.

Keywords

Mixed Finite Element Mixed Finite Element Method Nonlinear Elastic Problem Mixed Finite Element Discretization Element Discretization Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. D. N. Arnold, F. Brezzi, and J. Douglas. Peers: A new mixed finite element for plane elasticity. Japan Journal of Applied Mathematics, 1:347–367, 1984.zbMATHMathSciNetCrossRefGoogle Scholar
  2. K. J. Bathe. Finite Element Procedures. Prentice-Hall, Englewood Cliffs, New Jersey, 1996.Google Scholar
  3. K. J. Bathe, E. Ramm, and E. L. Wilson. Finite element formulation for large deformation analysis. International Journal for Numerical Methods in Engineering, 9:353–386, 1975.zbMATHCrossRefGoogle Scholar
  4. T. Belytschko, J. S.-J. Ong, W. K. Liu, and J. M. Kennedy. Hourglass control in linear and nonlinear problems. Computer Methods in Applied Mechanics and Engineering, 43:251–276, 1984.zbMATHCrossRefGoogle Scholar
  5. D. Braess. Finite Elemente. Springer-Verlag, Berlin, Heidelberg, New York, 1992.zbMATHGoogle Scholar
  6. F. Brezzi and M. Fortin. Mixed and hybrid finite element Methods. Springer, Berlin, Heidelberg, New York, 1991.zbMATHGoogle Scholar
  7. P. Chadwick. Continuum Mechanics, Concise Theory and Problems. Dover Publications, Mineola, 1999.Google Scholar
  8. D. Chapelle and K. J. Bathe. The inf-sup test. Computers and Structures, 47:537–545, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  9. P. G. Ciarlet. Mathematical Elasticity I: Three-dimensional Elasticity. North-Holland, Amsterdam, 1988.zbMATHGoogle Scholar
  10. G. Duffet and B. D. Reddy. The Analysis of Incompressible Hyperelastic Bodies by the Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 41:105–120, 1983.CrossRefMathSciNetGoogle Scholar
  11. P. J. Flory. Thermodynamic relations for high elastic materials. Trans. Faraday. Soc., 57:829–838, 1961.CrossRefMathSciNetGoogle Scholar
  12. B. M. Fraeijs de Veubeke. Stress function approach. In World Congress on the Finite Element Method in Structural Mechanics, pages 1–51. Bournmouth, 1975.Google Scholar
  13. S. Glaser and F. Armero. On the Formulation of Enhanced Strain Finite Elements in Finite Deformations. Engineering Computations, 14:759–791, 1997.zbMATHCrossRefGoogle Scholar
  14. F. Gruttmann, W. Wagner, and P. Wriggers. A nonlinear quadrilateral shell element with drilling degrees of freedom. Ingenieur Archiv, 62:474–486, 1992.zbMATHGoogle Scholar
  15. B. Häggblad and J. A. Sundberg. Large strain solutions of rubber components. Computers and Structures, 17:835–843, 1983.CrossRefGoogle Scholar
  16. G. A. Holzapfel. Nonlinear Solid Mechanics. Wiley, Chichester, 2000.zbMATHGoogle Scholar
  17. T. J. R. Hughes. Generalization of selective integration procedures to anisotropic and nonlinear media. International Journal for Numerical Methods in Engineering, 15:1413–1418, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  18. T. J. R. Hughes and F. Brezzi. On drilling degrees of freedom. Computer Methods in Applied Mechanics and Engineering, 72:105–121, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  19. T. R. J. Hughes. The Finite Element Method. Prentice Hall, Englewood Cliffs, New Jersey, 1987.zbMATHGoogle Scholar
  20. A. Ibrahimbegovic, R. L. Taylor, and E. L. Wilson. A robust quadrilateral membrane element with drilling degrees of freedom. International Journal for Numerical Methods in Engineering, 30:445–457, 1990.zbMATHCrossRefGoogle Scholar
  21. M. Iura and S. N. Atluri. Formulation of a membrane finite element with drilling degrees of freedom. Computational Mechanics, 39:417–428, 1992.CrossRefGoogle Scholar
  22. J. Korelc and P. Wriggers. Consistent gradient formulation for a stable enhanced strain method for large deformations. Engineering Computations, 13:103–123, 1996.CrossRefGoogle Scholar
  23. D. S. Malkus and T. J. R. Hughes. Mixed finite element methods — reduced and selective integration techniques: a unification of concepts. Computer Methods in Applied Mechanics and Engineering, 15:63–81, 1978.zbMATHCrossRefGoogle Scholar
  24. L. E. Malvern. Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs, New Jersey, 1969.Google Scholar
  25. J. E. Marsden and T. J. R. Hughes. Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs, New Jersey, 1983.zbMATHGoogle Scholar
  26. J. T. Oden and J. E. Key. Numerical analysis of finite axisymmetrical deformations of incompressible elastic solids of revolution. International Journal of Solids & Structures, 6:497–518, 1970.zbMATHCrossRefGoogle Scholar
  27. R. W. Ogden. Non-Linear Elastic Deformations. Ellis Horwood and John Wiley, Chichester, 1984.Google Scholar
  28. T. H. H. Pian. Derivation of element stiffness matrices by assumed stress distributions. AIAA-J. 2, 7:1333–1336, 1964.Google Scholar
  29. T. H. H. Pian and K. Sumihara. Rational approach for assumed stress finite elements. International Journal for Numerical Methods in Engineering, 20:1685–1695, 1984.zbMATHCrossRefGoogle Scholar
  30. S. Reese. On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 194:4685–4715, 2005.zbMATHCrossRefGoogle Scholar
  31. S. Reese and P. Wriggers. A new stabilization concept for finite elements in large deformation problems. International Journal for Numerical Methods in Engineering, 48:79–110, 2000.zbMATHCrossRefGoogle Scholar
  32. O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear equations with pardiso. Journal of Future Generation Computer Systems, 20:475–487, 2004.CrossRefGoogle Scholar
  33. J. C. Simo and F. Armero. Geometrically Non-Linear Enhanced Strain Mixed Methods and the Method of Incompatible Modes. International Journal for Numerical Methods in Engineering, 33:1413–1449, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  34. J. C. Simo and T. J. R. Hughes. Computational Inelasticity. Springer, New York, Berlin, 1998.zbMATHGoogle Scholar
  35. J. C. Simo and M. S. Rifai. A class of assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 29:1595–1638, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  36. J. C. Simo and R. L. Taylor. Quasi-incompressible finite elasticity in principal stretches. continuum basis and numerical algorithms. Computer Methods in Applied Mechanics and Engineering, 85:273–310, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  37. J. C. Simo, R. L. Taylor, and K. S. Pister. Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 51:177–208, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  38. J. C. Simo, F. Armero, and R. L. Taylor. Improved Versions of Assumed Enhanced Strain Tri-Linear Elements for 3D Finite Deformation Problems. Computer Methods in Applied Mechanics and Engineering, 110: 359–386, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  39. R. Stenberg. A family of mixed finite elements for elasticity problems. Numerische Mathematik, 48:513–538, 1988.CrossRefMathSciNetGoogle Scholar
  40. T. Sussman and K.-J. Bathe. A Finite Element Formulation for Nonlinear Incompressible Elastic and Inelastic Analysis. Computers and Structures, 26:357–409, 1987.zbMATHCrossRefGoogle Scholar
  41. R.LL. Taylor, P. J. Beresford, and E. L. Wilson. A Non-Conforming Element for Stress Analysis. International Journal for Numerical Methods in Engineering, 10:1211–1219, 1976.zbMATHCrossRefGoogle Scholar
  42. C. Truesdell and W. Noll. The nonlinear field theories of mechanics. In S. Flügge, editor, Handbuch der Physik III/3. Springer, Berlin, Heidelberg, Wien, 1965.Google Scholar
  43. C. Truesdell and R. Toupin. The classical field theories. In Handbuch der Physik III/1. Springer, Berlin, Heidelberg, Wien, 1960.Google Scholar
  44. K. Washizu. Variational Methods in Elasticity and Plasticity. Pergamon Press, Oxford, second edition, 1975.zbMATHGoogle Scholar
  45. E. L. Wilson, R. L. Taylor, W. P. Doherty, and J. Ghaboussi. Incompatible Displacements Models. In Numerical and Computer Models in Structural Mechanics, Fenves S. J., Perrone N., Robinson A. R. and Schnobrich W. C. (Eds.), New York, 1973. Academic Press. 43–57.Google Scholar
  46. P. Wriggers. Nichtlineare Finite Elemente. Springer, Berlin, 2001.Google Scholar
  47. P. Wriggers. Nonlinear Finite Elements. Springer, Berlin, Heidelberg, New York, 2008.Google Scholar
  48. P. Wriggers and S. Reese. A note on enhanced strain methods for large deformations. Computer Methods in Applied Mechanics and Engineering, 135:201–209, 1996.zbMATHCrossRefGoogle Scholar
  49. O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, 4th Ed., volume 1. McGraw Hill, London, 1989.Google Scholar
  50. O. C. Zienkiewicz, R. L. Taylor, and J. M. Too. Reduced Integration Technique in General Analysis of Plates and Shells. International Journal for Numerical Methods in Engineering, 3:275–290, 1971.zbMATHCrossRefGoogle Scholar

Copyright information

© CISM, Udine 2009

Authors and Affiliations

  • P. Wriggers
    • 1
  1. 1.Institute for Continuum MechanicsLeibniz Universität HannoverHannoverGermany

Personalised recommendations