Skip to main content

Mixed Finite Element Methods - Theory and Discretization

  • Chapter
Mixed Finite Element Technologies

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 509))

Abstract

This contribution is concerned with the formulation of mixed finite elements discretization schemes for nonlinear problems of solid mechanics. Thus continuum mechanics for solids is described in the first section to provide the necessary background for the numerical method. This includes necessary kinematical relations as well as the balance laws with their weak forms and the constitutive equations. The second section then describes mixed discretization schemes which can be applied to simulate nonlinear elastic problems including finite deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • D. N. Arnold, F. Brezzi, and J. Douglas. Peers: A new mixed finite element for plane elasticity. Japan Journal of Applied Mathematics, 1:347–367, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  • K. J. Bathe. Finite Element Procedures. Prentice-Hall, Englewood Cliffs, New Jersey, 1996.

    Google Scholar 

  • K. J. Bathe, E. Ramm, and E. L. Wilson. Finite element formulation for large deformation analysis. International Journal for Numerical Methods in Engineering, 9:353–386, 1975.

    Article  MATH  Google Scholar 

  • T. Belytschko, J. S.-J. Ong, W. K. Liu, and J. M. Kennedy. Hourglass control in linear and nonlinear problems. Computer Methods in Applied Mechanics and Engineering, 43:251–276, 1984.

    Article  MATH  Google Scholar 

  • D. Braess. Finite Elemente. Springer-Verlag, Berlin, Heidelberg, New York, 1992.

    MATH  Google Scholar 

  • F. Brezzi and M. Fortin. Mixed and hybrid finite element Methods. Springer, Berlin, Heidelberg, New York, 1991.

    MATH  Google Scholar 

  • P. Chadwick. Continuum Mechanics, Concise Theory and Problems. Dover Publications, Mineola, 1999.

    Google Scholar 

  • D. Chapelle and K. J. Bathe. The inf-sup test. Computers and Structures, 47:537–545, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  • P. G. Ciarlet. Mathematical Elasticity I: Three-dimensional Elasticity. North-Holland, Amsterdam, 1988.

    MATH  Google Scholar 

  • G. Duffet and B. D. Reddy. The Analysis of Incompressible Hyperelastic Bodies by the Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 41:105–120, 1983.

    Article  MathSciNet  Google Scholar 

  • P. J. Flory. Thermodynamic relations for high elastic materials. Trans. Faraday. Soc., 57:829–838, 1961.

    Article  MathSciNet  Google Scholar 

  • B. M. Fraeijs de Veubeke. Stress function approach. In World Congress on the Finite Element Method in Structural Mechanics, pages 1–51. Bournmouth, 1975.

    Google Scholar 

  • S. Glaser and F. Armero. On the Formulation of Enhanced Strain Finite Elements in Finite Deformations. Engineering Computations, 14:759–791, 1997.

    Article  MATH  Google Scholar 

  • F. Gruttmann, W. Wagner, and P. Wriggers. A nonlinear quadrilateral shell element with drilling degrees of freedom. Ingenieur Archiv, 62:474–486, 1992.

    MATH  Google Scholar 

  • B. Häggblad and J. A. Sundberg. Large strain solutions of rubber components. Computers and Structures, 17:835–843, 1983.

    Article  Google Scholar 

  • G. A. Holzapfel. Nonlinear Solid Mechanics. Wiley, Chichester, 2000.

    MATH  Google Scholar 

  • T. J. R. Hughes. Generalization of selective integration procedures to anisotropic and nonlinear media. International Journal for Numerical Methods in Engineering, 15:1413–1418, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  • T. J. R. Hughes and F. Brezzi. On drilling degrees of freedom. Computer Methods in Applied Mechanics and Engineering, 72:105–121, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  • T. R. J. Hughes. The Finite Element Method. Prentice Hall, Englewood Cliffs, New Jersey, 1987.

    MATH  Google Scholar 

  • A. Ibrahimbegovic, R. L. Taylor, and E. L. Wilson. A robust quadrilateral membrane element with drilling degrees of freedom. International Journal for Numerical Methods in Engineering, 30:445–457, 1990.

    Article  MATH  Google Scholar 

  • M. Iura and S. N. Atluri. Formulation of a membrane finite element with drilling degrees of freedom. Computational Mechanics, 39:417–428, 1992.

    Article  Google Scholar 

  • J. Korelc and P. Wriggers. Consistent gradient formulation for a stable enhanced strain method for large deformations. Engineering Computations, 13:103–123, 1996.

    Article  Google Scholar 

  • D. S. Malkus and T. J. R. Hughes. Mixed finite element methods — reduced and selective integration techniques: a unification of concepts. Computer Methods in Applied Mechanics and Engineering, 15:63–81, 1978.

    Article  MATH  Google Scholar 

  • L. E. Malvern. Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs, New Jersey, 1969.

    Google Scholar 

  • J. E. Marsden and T. J. R. Hughes. Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

    MATH  Google Scholar 

  • J. T. Oden and J. E. Key. Numerical analysis of finite axisymmetrical deformations of incompressible elastic solids of revolution. International Journal of Solids & Structures, 6:497–518, 1970.

    Article  MATH  Google Scholar 

  • R. W. Ogden. Non-Linear Elastic Deformations. Ellis Horwood and John Wiley, Chichester, 1984.

    Google Scholar 

  • T. H. H. Pian. Derivation of element stiffness matrices by assumed stress distributions. AIAA-J. 2, 7:1333–1336, 1964.

    Google Scholar 

  • T. H. H. Pian and K. Sumihara. Rational approach for assumed stress finite elements. International Journal for Numerical Methods in Engineering, 20:1685–1695, 1984.

    Article  MATH  Google Scholar 

  • S. Reese. On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 194:4685–4715, 2005.

    Article  MATH  Google Scholar 

  • S. Reese and P. Wriggers. A new stabilization concept for finite elements in large deformation problems. International Journal for Numerical Methods in Engineering, 48:79–110, 2000.

    Article  MATH  Google Scholar 

  • O. Schenk and K. Gärtner. Solving unsymmetric sparse systems of linear equations with pardiso. Journal of Future Generation Computer Systems, 20:475–487, 2004.

    Article  Google Scholar 

  • J. C. Simo and F. Armero. Geometrically Non-Linear Enhanced Strain Mixed Methods and the Method of Incompatible Modes. International Journal for Numerical Methods in Engineering, 33:1413–1449, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • J. C. Simo and T. J. R. Hughes. Computational Inelasticity. Springer, New York, Berlin, 1998.

    MATH  Google Scholar 

  • J. C. Simo and M. S. Rifai. A class of assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering, 29:1595–1638, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • J. C. Simo and R. L. Taylor. Quasi-incompressible finite elasticity in principal stretches. continuum basis and numerical algorithms. Computer Methods in Applied Mechanics and Engineering, 85:273–310, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  • J. C. Simo, R. L. Taylor, and K. S. Pister. Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 51:177–208, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  • J. C. Simo, F. Armero, and R. L. Taylor. Improved Versions of Assumed Enhanced Strain Tri-Linear Elements for 3D Finite Deformation Problems. Computer Methods in Applied Mechanics and Engineering, 110: 359–386, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Stenberg. A family of mixed finite elements for elasticity problems. Numerische Mathematik, 48:513–538, 1988.

    Article  MathSciNet  Google Scholar 

  • T. Sussman and K.-J. Bathe. A Finite Element Formulation for Nonlinear Incompressible Elastic and Inelastic Analysis. Computers and Structures, 26:357–409, 1987.

    Article  MATH  Google Scholar 

  • R.LL. Taylor, P. J. Beresford, and E. L. Wilson. A Non-Conforming Element for Stress Analysis. International Journal for Numerical Methods in Engineering, 10:1211–1219, 1976.

    Article  MATH  Google Scholar 

  • C. Truesdell and W. Noll. The nonlinear field theories of mechanics. In S. Flügge, editor, Handbuch der Physik III/3. Springer, Berlin, Heidelberg, Wien, 1965.

    Google Scholar 

  • C. Truesdell and R. Toupin. The classical field theories. In Handbuch der Physik III/1. Springer, Berlin, Heidelberg, Wien, 1960.

    Google Scholar 

  • K. Washizu. Variational Methods in Elasticity and Plasticity. Pergamon Press, Oxford, second edition, 1975.

    MATH  Google Scholar 

  • E. L. Wilson, R. L. Taylor, W. P. Doherty, and J. Ghaboussi. Incompatible Displacements Models. In Numerical and Computer Models in Structural Mechanics, Fenves S. J., Perrone N., Robinson A. R. and Schnobrich W. C. (Eds.), New York, 1973. Academic Press. 43–57.

    Google Scholar 

  • P. Wriggers. Nichtlineare Finite Elemente. Springer, Berlin, 2001.

    Google Scholar 

  • P. Wriggers. Nonlinear Finite Elements. Springer, Berlin, Heidelberg, New York, 2008.

    Google Scholar 

  • P. Wriggers and S. Reese. A note on enhanced strain methods for large deformations. Computer Methods in Applied Mechanics and Engineering, 135:201–209, 1996.

    Article  MATH  Google Scholar 

  • O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method, 4th Ed., volume 1. McGraw Hill, London, 1989.

    Google Scholar 

  • O. C. Zienkiewicz, R. L. Taylor, and J. M. Too. Reduced Integration Technique in General Analysis of Plates and Shells. International Journal for Numerical Methods in Engineering, 3:275–290, 1971.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 CISM, Udine

About this chapter

Cite this chapter

Wriggers, P. (2009). Mixed Finite Element Methods - Theory and Discretization. In: Carstensen, C., Wriggers, P. (eds) Mixed Finite Element Technologies. CISM International Centre for Mechanical Sciences, vol 509. Springer, Vienna. https://doi.org/10.1007/978-3-211-99094-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99094-0_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99092-6

  • Online ISBN: 978-3-211-99094-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics