Skip to main content

Numerical Simulation of Charge Transport in Semiconductor Devices Using Mixed Finite Elements

  • Chapter
Book cover Mixed Finite Element Technologies

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 509))

  • 1536 Accesses

Abstract

In this lecture, we present the basic mathematical and numerical tools for semiconductor device simulation using the Drift-Diffusion model. The Gummel’s decoupled fixed point map is first reviewed, and then the dual-mixed Formulation of the diffusion-advection-reaction (DAR) differential problems resulting from decoupling is considered. The Galerkin finite element discretization of the weak mixed form is discussed, with a proper treatment of the flux mass matrix that leads to a mixed finite volume approximation of the DAR equation. Several numerical examples are included to validate the proposed procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. D. N. Arnold, F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér., 19, 7–32 (1995).

    MathSciNet  Google Scholar 

  2. I. Babuška, J.E. Osborn, Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods, SIAM J. Numer. Anal., 20 (3), 510–536 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York (1991).

    MATH  Google Scholar 

  4. F. Brezzi, P. Marini, P. Pietra, Two-dimensional exponential fitting and applications to semiconductor device equations, SIAM J. Numer. Anal. 26, 1342–1355 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Brezzi, L. D. Marini, S. Micheletti, P. Pietra, R. Sacco, S. Wang, Discretization of Semiconductor Device Problems (I), 317–441, Handbook of Numerical Analysis, Vol. XIII, P.G. Ciarlet Ed., W.H.A. Schilders, E.J.W. ter Maten, Guest Eds., Elsevier North-Holland, Amsterdam (2005).

    Google Scholar 

  6. E. Buturla, P. Cottrell, B.M. Grossman, K.A. Salsburg, Finite Element Analysis of Semiconductor Devices: The FIELDAY Program, IBM J. Res. Develop., 25 (4), 218–231 (1981).

    Article  Google Scholar 

  7. P.G. Ciarlet The finite element method for elliptic problems, North-Holland, Amsterdam (1978).

    MATH  Google Scholar 

  8. J.W. Jerome, Analysis of Charge Transport, Springer-Verlag Berlin Heidelberg (1996).

    Google Scholar 

  9. P. A. Markowich, The Stationary Semiconductor Device Equations, Springer-Verlag, Wien New York, 1986).

    Google Scholar 

  10. P. A. Markowich, C. A. Ringhofer, C. Schmeiser, Semiconductor equations, Springer-Verlag, Wien New York, 1990.

    MATH  Google Scholar 

  11. S. Micheletti, R. Sacco, F. Saleri, On Some Mixed Finite Element Methods with Numerical Integration, SIAM J. Sci. Comput. 23, No.1, 245–270 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  12. P.A. Raviart, J.M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method (I. Galligani, E. Magenes, eds.), Lecture Notes in Math., Springer-Verlag, New York, 606, 292–315 (1977).

    Google Scholar 

  13. H. G. Roos, M. Stynes, L. Tobiska, Numerical methods for singularly perturbed differential equations, Springer-Verlag, Berlin Heidelberg (1996).

    MATH  Google Scholar 

  14. D.L. Scharfetter, H.K. Gummel, Large signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron Devices ED-16, 64–77 (1969).

    Article  Google Scholar 

  15. S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer-Verlag, Wien New York, 1984.

    Google Scholar 

  16. J. W. Slotboom, Computer-Aided Two-Dimensional Analysis of Bipolar Transistors, IEEE Trans. Electr. Dev., ED-20, 669–679 (1973).

    Article  Google Scholar 

  17. R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 CISM, Udine

About this chapter

Cite this chapter

Sacco, R. (2009). Numerical Simulation of Charge Transport in Semiconductor Devices Using Mixed Finite Elements. In: Carstensen, C., Wriggers, P. (eds) Mixed Finite Element Technologies. CISM International Centre for Mechanical Sciences, vol 509. Springer, Vienna. https://doi.org/10.1007/978-3-211-99094-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-99094-0_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-99092-6

  • Online ISBN: 978-3-211-99094-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics