Advertisement

Numerical Simulation of Charge Transport in Semiconductor Devices Using Mixed Finite Elements

  • Riccardo Sacco
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 509)

Abstract

In this lecture, we present the basic mathematical and numerical tools for semiconductor device simulation using the Drift-Diffusion model. The Gummel’s decoupled fixed point map is first reviewed, and then the dual-mixed Formulation of the diffusion-advection-reaction (DAR) differential problems resulting from decoupling is considered. The Galerkin finite element discretization of the weak mixed form is discussed, with a proper treatment of the flux mass matrix that leads to a mixed finite volume approximation of the DAR equation. Several numerical examples are included to validate the proposed procedure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    D. N. Arnold, F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér., 19, 7–32 (1995).MathSciNetGoogle Scholar
  2. [2]
    I. Babuška, J.E. Osborn, Generalized Finite Element Methods: Their Performance and Their Relation to Mixed Methods, SIAM J. Numer. Anal., 20 (3), 510–536 (1983).zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York (1991).zbMATHGoogle Scholar
  4. [4]
    F. Brezzi, P. Marini, P. Pietra, Two-dimensional exponential fitting and applications to semiconductor device equations, SIAM J. Numer. Anal. 26, 1342–1355 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    F. Brezzi, L. D. Marini, S. Micheletti, P. Pietra, R. Sacco, S. Wang, Discretization of Semiconductor Device Problems (I), 317–441, Handbook of Numerical Analysis, Vol. XIII, P.G. Ciarlet Ed., W.H.A. Schilders, E.J.W. ter Maten, Guest Eds., Elsevier North-Holland, Amsterdam (2005).Google Scholar
  6. [6]
    E. Buturla, P. Cottrell, B.M. Grossman, K.A. Salsburg, Finite Element Analysis of Semiconductor Devices: The FIELDAY Program, IBM J. Res. Develop., 25 (4), 218–231 (1981).CrossRefGoogle Scholar
  7. [7]
    P.G. Ciarlet The finite element method for elliptic problems, North-Holland, Amsterdam (1978).zbMATHGoogle Scholar
  8. [8]
    J.W. Jerome, Analysis of Charge Transport, Springer-Verlag Berlin Heidelberg (1996).Google Scholar
  9. [9]
    P. A. Markowich, The Stationary Semiconductor Device Equations, Springer-Verlag, Wien New York, 1986).Google Scholar
  10. [10]
    P. A. Markowich, C. A. Ringhofer, C. Schmeiser, Semiconductor equations, Springer-Verlag, Wien New York, 1990.zbMATHGoogle Scholar
  11. [11]
    S. Micheletti, R. Sacco, F. Saleri, On Some Mixed Finite Element Methods with Numerical Integration, SIAM J. Sci. Comput. 23, No.1, 245–270 (2001).zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    P.A. Raviart, J.M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method (I. Galligani, E. Magenes, eds.), Lecture Notes in Math., Springer-Verlag, New York, 606, 292–315 (1977).Google Scholar
  13. [13]
    H. G. Roos, M. Stynes, L. Tobiska, Numerical methods for singularly perturbed differential equations, Springer-Verlag, Berlin Heidelberg (1996).zbMATHGoogle Scholar
  14. [14]
    D.L. Scharfetter, H.K. Gummel, Large signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron Devices ED-16, 64–77 (1969).CrossRefGoogle Scholar
  15. [15]
    S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer-Verlag, Wien New York, 1984.Google Scholar
  16. [16]
    J. W. Slotboom, Computer-Aided Two-Dimensional Analysis of Bipolar Transistors, IEEE Trans. Electr. Dev., ED-20, 669–679 (1973).CrossRefGoogle Scholar
  17. [17]
    R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1962).Google Scholar

Copyright information

© CISM, Udine 2009

Authors and Affiliations

  • Riccardo Sacco
    • 1
  1. 1.Dipartimento di Matematica “F. Brioschi”Politecnico di MilanoItaly

Personalised recommendations