Advertisement

Fast Solvers for Mixed Finite Element Methods

  • Susanne C. Brenner
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 509)

Abstract

Discretizations of partial differential equations by mixed finite element methods result in large saddle point systems that require efficient solvers. In this chapter we present two classes of iterative methods for such problems: the (preconditioned) Uzawa algorithm and the (preconditioned) minimum residual algorithm. The implementations of these algorithms require either efficient preconditioners for the discrete Laplace operator and/or the efficient solution of the discrete Poisson problem. Towards this end we provide brief introductions to additive Schwarz (domain decomposition/multilevel) preconditioners and multigrid algorithms, after a discussion on block diagonal preconditioners for saddle point problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R.E. Bank and T.F. Dupont. An optimal order process for solving finite element equations. Math. Comp., 36:35–51, 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  2. M. Benzi, G.H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numerica, 14:1–137, 2005.zbMATHCrossRefMathSciNetGoogle Scholar
  3. F.A. Bornemann and P. Deuflhard. The cascadic multigrid method for elliptic problems. Numer. Math., 75:135–152, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  4. J.H. Bramble, J.E. Pasciak, and A.H. Schatz. The construction of preconditioners for elliptic problems by substructuring, I. Math. Comp., 47: 103–134, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
  5. J.H. Bramble, J.E. Pasciak, and P.S. Vassilevski. Computational scales of Sobolev norms with application to preconditioning. Math. Comp., 69: 463–480, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  6. J.H. Bramble, J.E. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math. Comp., 55:1–22, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  7. J.H. Bramble and J. Xu. Some estimates for a weighted L 2 projection. Math. Comp., 56:463–476, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  8. J.H. Bramble and X. Zhang. The Analysis of Multigrid Methods. In P.G. Ciarlet and J.L. Lions, editors, Handbook of Numerical Analysis, VII, pages 173–415. North-Holland, Amsterdam, 2000.Google Scholar
  9. S.C. Brenner. Convergence of nonconforming multigrid methods without full elliptic regularity. Math. Comp., 68:25–53, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  10. S.C. Brenner. Lower bounds for two-level additive Schwarz preconditioners with small overlap. SIAM J. Sci. Comput., 21:1657–1669, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  11. S.C. Brenner. Convergence of the multigrid V-cycle algorithm for second order boundary value problems without full elliptic regularity. Math. Comp., 71:507–525, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  12. S.C. Brenner. Convergence of nonconforming V-cycle and F-cycle multigrid algorithms for second order elliptic boundary value problem. Math. Comp., 73:1041–1066, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
  13. S.C. Brenner. Lower bounds in domain decomposition. Proceedings of the 16th International Conference on Domain Decomposition Methods (to appear), 2006.Google Scholar
  14. S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods (Second Edition). Springer-Verlag, New York-Berlin-Heidelberg, 2002.zbMATHGoogle Scholar
  15. S.C. Brenner and L.-Y. Sung. Lower bounds for nonoverlapping domain decomposition preconditioners in two dimensions. Math. Comp., 69:1319–1339, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  16. F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York-Berlin-Heidelberg, 1991.zbMATHGoogle Scholar
  17. W.L. Briggs, V.E. Henson, and S.F. McCormick. A Multigrid Tutorial. SIAM, Philadelphia, 2001.Google Scholar
  18. C.R. Dohrmann. A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput., 25:246–258, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  19. C. Douglas, G. Hasse, and Langer. A Tutorial on Elliptic PDE Solvers and Their Parallelization. Software-Environments-Tools. SIAM, Philadelphia, 2003.zbMATHGoogle Scholar
  20. M. Dryja and O.B. Widlund. An additive variant of the Schwarz alternating method in the case of many subregions. Technical Report 339, Department of Computer Science, Courant Institute, 1987.Google Scholar
  21. M. Dryja and O.B. Widlund. Schwarz methods of Neumann-Neumann type for three dimensional elliptic finite element problems. Comm. Pure Appl. Math., 48:121–155, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  22. H. Elman, D. Silvester, and A. Wathen. Finite Elements and Fast Iterative Solvers. Oxford University Press, Oxford, 2005.zbMATHGoogle Scholar
  23. C. Farhat, M. Lesoinne, and K. Pierson. A scalable dual-primal domain decomposition method. Numer. Linear Algebra Appl., 7:687–714, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  24. C. Farhat and F.-X. Roux. A method of finite element tearing and interconnecting and its parallel solution algorithm. Internat. J. Numer. Methods Engrg., 32:1205–1227, 1991.zbMATHCrossRefGoogle Scholar
  25. M. Fortin and R. Glowinski. Augmented Lagrangian Methods: Applications to to the Numerical Solution of Boundary-Value Problems. North-Holland, Amsterdam, New York, Oxford, 1983.zbMATHGoogle Scholar
  26. A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, 1997.zbMATHGoogle Scholar
  27. W. Hackbusch. Multi-grid Methods and Applications. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1985.zbMATHGoogle Scholar
  28. J. Mandel. Balancing domain decomposition. Comm. Numer. Methods Engrg., 9:233–241, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  29. M.F. Murphy, G.H. Golub, and A.J. Wathen. A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput, 21:1969–1972, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  30. A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Differential Equations. Clarendon Press, Oxford, 1999.zbMATHGoogle Scholar
  31. J.W. Ruge and K. Stüben. Algebraic multigrid. In S.F. McCormick, editor, Multigrid Methods, pages 73–130. SIAM, Philadelphia, 1987.Google Scholar
  32. J. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2003.zbMATHGoogle Scholar
  33. K. Stüben. A review of algebraic multigrid. J. Comput. Appl. Math., 128: 281–309, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  34. A. Toselli and O.B. Widlund. Domain Decomposition Methods — Algorithms and Theory. Springer, New York, 2004.Google Scholar
  35. U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic Press, San Diego, 2001.zbMATHGoogle Scholar
  36. P. Wesseling. An Introduction to Multigrid Methods. John Wiley & Sons, Chichester, 1992.zbMATHGoogle Scholar
  37. J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review, 34:581–613, 1992.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© CISM, Udine 2009

Authors and Affiliations

  • Susanne C. Brenner
    • 1
  1. 1.Center for Computation and Technology, Johnston HallLouisiana State UniversityBaton RougeUSA

Personalised recommendations