Skip to main content

Magnetic Resonance Spectroscopic Evaluation of Brain Tissue Metabolism After Irradiation for Pediatric Brain Tumors in Long-Term Survivors: A Report of Two Cases

  • Conference paper
  • First Online:
Book cover Brain Edema XIV

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 106))

Abstract

Objective

The aim of our study was to evaluate the metabolic profile of brain tissue of two long-term survivors of childhood brain tumors.

Materials

Two males who were 25 and 33 years old at the time of examination and had been irradiated for brain tumors at the age of 17 and 13 years respectively. The first subject had been operated on radically for medulloblastoma and received craniospinal axis irradiation composed of a whole brain radiotherapy with boost to the posterior fossa (total dose (TD) = 59.4 Gy in 33 fractions) and spinal canal irradiation (TD = 30 Gy in 20 fractions) according to the protocol at the time of treatment. The second subject had previously received whole brain irradiation (TD = 45 Gy in 19 fractions) because of inoperable central region tumor of unknown histology.

Methods

Short echo-time (TE = 30ms) point-resolved spectra were obtained using a 2 T magnet. Ratios of N-acetylaspartate (NAA), choline (Cho), myo-inositol (mI), lactate (Lac) and lipids (Lip) signal intensities were calculated using the creatine (Cr) signal as an internal reference. The spectra were acquired both from the tumor bed area and uninvolved brain tissue in the first subject, and from uninvolved brain areas of frontal and occipital lobes in the second subject.

Results

In both cases, MRS examination revealed ratios of NAA/Cr, Cho/Cr and mI/Cr within normal range in most spectra. Nevertheless, a slight elevation of Lac/Cr (2.47 and 1.05) and a more pronounced elevation of Lip/Cr proportions (45.77 and 3.97 respectively, in uninvolved sites) were detected in both patients.

Conclusions

Metabolic parameters correlated with neuronal function (NAA/Cr) and cell membrane metabolites turnover (Cho/Cr) seem to recover to normal values in long-term survivors of brain tumors. Lac/Cr and Lip/Cr proportions could be considered parameters indicating permanent radiation-induced brain damage; however, this proposal requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belka C, Budach W, Kortmann RD, Bamberg M (2001) Radiation induced CNS toxicity – molecular and cellular mechanisms. Br J Cancer 85(9):1233–1299

    Article  PubMed  CAS  Google Scholar 

  2. Fouladi M, Chintagumpala M, Laningham FH, Ashley D, Kellie SJ, Langston JW, McCluggage CW, Woo S, Kocak M, Krull K, Kun LE, Mulhern RK, Gajjar A (2004) White matter lesions detected by magnetic resonance imaging after radiotherapy and high-dose chemotherapy in children with medulloblastoma or primitive neuroectodermal tumor. J Clin Oncol 22(22):4551–4560

    Article  PubMed  Google Scholar 

  3. Fuss M, Poljanc K, Hug EB (2000) Full Scale IQ (FSIQ) changes in children treated with whole brain and partial brain irradiation. A review and analysis. Strahlenther Onkol 176(12):573–581

    Article  PubMed  CAS  Google Scholar 

  4. Hoppe-Hirsch E, Brunet L, Laroussinie F, Cinalli G, Pierre-Kahn A, Rénier D, Sainte-Rose C, Hirsch JF (1995) Intellectual outcome in children with malignant tumors of the posterior fossa: influence of the field of irradiation and quality of surgery. Childs Nerv Syst 11(6):340–345

    Article  PubMed  CAS  Google Scholar 

  5. Kizu O, Naruse S, Furuya S, Morishita H, Ide M, Maeda T, Ueda S (1988) Application of proton chemical shift imaging in monitoring of gamma knife radiosurgery on brain tumors. Magn Reson Imaging 16(2):197–204

    Article  Google Scholar 

  6. Merchant TE, Kiehna EN, Li C, Shukla H, Sengupta S, Xiong X, Gajjar A, Mulhern RK (2006) Modeling radiation dosimetry to predict cognitive outcomes in pediatric patients with CNS embryonal tumors including medulloblastoma. Int J Radiat Oncol Biol Phys 65(1):210–221

    Article  PubMed  Google Scholar 

  7. Miller BL, Chang L, Booth R, Ernst T, Cornford M, Nikas D, McBride D, Jenden DJ (1996) In vivo 1H MRS choline: correlation with in vitro chemistry/histology. Life Sci 58(22):1929–1935

    Article  PubMed  CAS  Google Scholar 

  8. Negendank WG, Sauter R, Brown TR, Evelhoch JL, Falini A, Gotsis ED, Heerschap A, Kamada K, Lee BC, Mengeot MM, Moser E, Padavic-Shaller KA, Sanders JA, Spraggins TA, Stillman AE, Terwey B, Vogl TJ, Wicklow K, Zimmerman RA (1996) Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 84(3):449–458

    Article  PubMed  CAS  Google Scholar 

  9. Rand SD, Prost P, Haughton V, Mark L, Stainer J, Johansen J, Kim TA, Chetty VK, Mueller W, Meyer G, Krouwer H (1997) Accuracy of single-voxel proton MR spectroscopy in distinguishing neoplastic from nonneoplastic brain lesions. AJNR Am J Neuroradiol 18:1695–1704

    PubMed  CAS  Google Scholar 

  10. Reddick WE, Glass JO, Palmer SL, Wu S, Gajjar A, Langston JW, Kun LE, Xiong X, Mulhern RK (2005) Atypical white matter volume development in children following craniospinal irradiation. Neuro Oncol 7(1):12–19

    Article  PubMed  Google Scholar 

  11. Reeves CB, Palmer SL, Reddick WE, Merchant TE, Buchanan GM, Gajjar A, Mulhern RK (2006) Attention and memory functioning among pediatric patients with medulloblastoma. J Pediatr Psychol 31(3):272–280

    Article  PubMed  Google Scholar 

  12. Ross AJ, Sachdev PS, Wen W, Valenzuela MJ, Brodaty H (2005) Cognitive correlates of 1H MRS measures in the healthy elderly brain. Brain Res Bull 66(1):9–16

    Article  PubMed  Google Scholar 

  13. Rutkowski T, Tarnawski R, Sokol M, Maciejewski B (2003) 1H-MR spectroscopy of normal brain tissue before and after postoperative radiotherapy because of primary brain tumors. Int J Radiat Oncol Biol Phys 56(5):1381–1389

    Article  PubMed  Google Scholar 

  14. Tarnawski R, Sokol M, Pieniazek P, Maciejewski B, Walecki J, Miszczyk L, Krupska T (2002) 1H-MRS in vivo predicts the early treatment outcome of postoperative radiotherapy for malignant gliomas. Int J Radiat Oncol Biol Phys 52(5):1271–1276

    Article  PubMed  Google Scholar 

  15. Tomoi M, Kimura H, Yoshida M, Itoh S, Kawamura Y, Hayashi N, Yamamoto K, Kubota T, Ishii Y (1997) Alterations of lactate (+lipid) concentration in brain tumors with in vivo hydrogen magnetic resonance spectroscopy during radiotherapy. Invest Radiol 32(5):288–296

    Article  PubMed  CAS  Google Scholar 

  16. Usenius T, Usenius JP, Tenhunen M, Vainio P, Johansson R, Soimakallio S, Kauppinen R (1995) Radiation-induced changes in human brain metabolites as studied by 1H nuclear magnetic resonance spectroscopy in vivo. Int J Radiat Oncol Biol Phys 33(3):719–724

    Article  PubMed  CAS  Google Scholar 

  17. Yousem DM, Lenkinski RE, Evans S, Allen D, O’Brien R, Curran W, Schnall M, Bennett M, Wehrli SL, Grossman RI (1992) Proton MR spectroscopy of experimental radiation-induced white matter injury. J Comput Assist Tomogr 16(4):543–548

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir Blamek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this paper

Cite this paper

Blamek, S., Wydmański, J., Sokół, M., Matulewicz, Ł., Boguszewicz, Ł. (2010). Magnetic Resonance Spectroscopic Evaluation of Brain Tissue Metabolism After Irradiation for Pediatric Brain Tumors in Long-Term Survivors: A Report of Two Cases. In: Czernicki, Z., Baethmann, A., Ito, U., Katayama, Y., Kuroiwa, T., Mendelow, D. (eds) Brain Edema XIV. Acta Neurochirurgica Supplementum, vol 106. Springer, Vienna. https://doi.org/10.1007/978-3-211-98811-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-98811-4_35

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-98758-2

  • Online ISBN: 978-3-211-98811-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics