Skip to main content

A Deeper Look at B1 and Modulation Field Distribution in a Resonator

  • Chapter
  • First Online:
Quantitative EPR

Abstract

The EPR signal is proportional to the microwave B1 at the sample, which is proportional to √P. Consequently, it is important to carefully examine the distribution of B1 over a sample of finite size, such as a standard liquid or powdered sample in a 4 mm o.d. quartz sample tube. In the typical EPR experiment that uses magnetic field modulation and phase-sensitive detection, the integrated signal intensity is proportional to the modulation amplitude at the sample. Therefore, it is also important to consider the distribution of modulation amplitude over the sample. The details of these two factors are discussed in this chapter. This chapter also includes discussion of sample size, issues related to automatic frequency control (AFC) for very narrow signals, and cell geometries for aqueous samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, J.R., Mett, R.R., Hyde, J.S.: Cavities with axially uniform fields for use in electron paramagnetic resonance. II. Free space generalization. Rev. Sci. Instrum. 73(8), 3027–3037 (2002)

    Article  ADS  Google Scholar 

  • Ardenkjaer-Larsen, J.H., Laursen, I., Leunbach, I., Ehnholm, G., Wistrand, L.-G., Petersson, J.S., Golman, K.: EPR and DNP properties of certain novel single electron contrast agents intended for oximetric imaging. J. Magn. Reson. 133, 1–12 (1998)

    Article  ADS  Google Scholar 

  • Casteleijn, G., TenBosch, J.J., Smidt, J.: Error analysis of the determination of spin concentration with the electron spin resonance method. J. Appl. Phys. 39, 4375–4380 (1968)

    Article  ADS  Google Scholar 

  • Chang, R.: Simple setup for quantitative electron paramagnetic resonance. Anal. Chem. 46, 1360 (1974)

    Article  Google Scholar 

  • Dalal, D.P., Eaton, S.S., Eaton, G.R.: The effects of lossy solvents on quantitative EPR studies. J. Magn. Reson. 44(3), 415–428 (1981a)

    Google Scholar 

  • Eaton, S.S., Eaton, G.R.: Electron paramagnetic resonance cell for lossy samples. Anal. Chem. 49, 1277–1278 (1977)

    Article  Google Scholar 

  • Eaton, S.S., Eaton, G.R.: Signal area measurements in EPR. Bull. Magn. Reson. 1(3), 130–138 (1980)

    Google Scholar 

  • Eaton, S.S., Eaton, G.R.: Electron paramagnetic resonance. In: Cazes, J. (ed.) Analytical Instrumentation Handbook, 3rd edn, pp. 349–398. Marcel Dekker, New York (2005)

    Google Scholar 

  • Goldberg, I.B., Crowe, H.R.: Effect of cavity loading on analytical electron spin resonance spectrometry. Anal. Chem. 49, 1353–1357 (1977)

    Article  Google Scholar 

  • Hyde, J.S.: A new principle for aqueous sample cells for EPR. Rev. Sci. Instrum. 43, 629–631 (1972)

    Article  ADS  Google Scholar 

  • Hyde, J.S., Mett, R.R.: Aqueous sample considerations in uniform field resonators for electron paramagnetic resonance spectroscopy. Curr. Top. Biophys. 26, 7–14 (2002)

    Google Scholar 

  • Hyde, J.S., Mett, R.R., Anderson, J.R.: Cavities with axially uniform fields for use in electron paramag-netic resonance. III. Re-entrant geometries. Rev. Sci. Instrum. 73(11), 4003–4009 (2002)

    Article  ADS  Google Scholar 

  • Ilangovan, G., Zweier, J.L., Kuppusamy, P.: Mechanism of oxygen-induced EPR line broadening in lithium phthalocyanine microcrystals. J. Magn. Reson. 170, 42–48 (2004)

    Article  ADS  Google Scholar 

  • Kooser, R.G., Volland, W.V., Freed, J.H.: E.S.R. relaxation studies on orbitally degenerate free radicals. I. Benzene anion and tropenyl. J. Chem. Phys. 50, 5243–5257 (1969)

    Article  ADS  Google Scholar 

  • Mailer, C., Sarna, T., Swartz, H.M., Hyde, J.S.: Quantitative studies of free radicals in biology: corrections to ESR saturation data. J. Magn. Reson. 25, 205–210 (1977)

    Google Scholar 

  • Mazúr, M.: A dozen useful tips on how to minimize the influence of sources of error in quantitative electron paramagnetic resonance (EPR) spectroscopy – a review. Anal. Chim. Acta 561, 1–15 (2006)

    Article  Google Scholar 

  • Mazúr, M., Moncol, J., Valko, M., Morris, H.: Analysis of the radial and longitudinal effect of a planar sample in a single TE102 rectangular electron paramagnetic resonance (EPR) cavity. Anal. Chim. Acta 526, 163–176 (2004)

    Article  Google Scholar 

  • Mazúr, M., Moncol, J., Valko, M., Morris, H.: Analysis of the longitudinal “sloping plateau” effect in a single TE102 rectangular cavity. Anal. Chim. Acta 538, 165–174 (2005)

    Article  Google Scholar 

  • Mazúr, M., Morris, H., Valko, M.: Analysis of the movement of line-like samples of variable length along the x-axis of a double TE104 and a single TE102 rectangular resonator. J. Magn. Reson. 129, 188–200 (1997a)

    Article  ADS  Google Scholar 

  • Mazúr, M., Valko, M.: Radial effect of the EPR signal intensity in a Bruker single TE102 rectangular cavity. Bruker Rep 147, 43–45 (1999)

    Google Scholar 

  • Mazúr, M., Valko, M., Klement, R., Morris, H.: Quantitative electron paramagnetic resonance (EPR) spectrometry with a TE104 double rectangular cavity. Part 1. A simple alignment procedure for the precision positioning of the sample. Anal. Chim. Acta 333, 249–252 (1996a)

    Article  Google Scholar 

  • Mazúr, M., Valko, M., Micov, M., Morris, H.: Analytical solution for the electron paramagnetic resonance signal intensity of a line-like sample of variable length whose centre is situated at an arbitrary position along the common sample-cavity x-axis. Anal. Chim. Acta 373, 107–109 (1998)

    Article  Google Scholar 

  • Mazúr, M., Valko, M., Morris, H.: A simple alignment procedure for the precision positioning of the sample at arbitrary points of the intracavity space of a TE104 double rectangular cavity. Rev. Sci. Instrum. 68, 2514–2517 (1997b)

    Article  ADS  Google Scholar 

  • Mazúr, M., Valko, M., Morris, H.: Analysis of the radial and longitudinal effect in a double TE104 and a single TE102 rectangular cavity. J. Magn. Reson. 142, 37–56 (2000)

    Article  ADS  Google Scholar 

  • Mazúr, M., Valko, M., Morris, H.: Influence of the movement of “over full-length cavity” cylindrical samples along the x-axis of a double TE104 and a single TE102 rectangular cavity on the electron paramagnetic resonance. An unusual effect analysis. Anal. Chim. Acta 443, 127–141 (2001)

    Article  Google Scholar 

  • Mazúr, M., Valko, M., Morris, H.: Influence of the variable wall thickness of the sample tube and a quartz Dewar on an EPR signal intensity in a single TE102 and double TE104 rectangular cavities. Anal. Chim. Acta 482, 229–248 (2003)

    Article  Google Scholar 

  • Mazúr, M., Valko, M., Morris, H., Klement, R.: Quantitative electron paramagnetic resonance (EPR) spectrometry with a TE104 double rectangular cavity. Part 2. Analysis of sample and TE104 cavity error sources associated with the movement of line-like samples into the TE104 cavity. Anal. Chim. Acta 333, 253–265 (1996b)

    Article  Google Scholar 

  • Mazúr, M., Valko, M., Pelikan, P.: Quantitative EPR spectroscopy in solid state chemistry. Chem. Pap. 51, 134–136 (1997c)

    Google Scholar 

  • Mett, R.R., Froncisz, W., Hyde, J.S.: Axially uniform resonant cavity modes for potential use in electron paramagnetic resonance spectroscopy. Rev. Sci. Instrum. 72(11), 4188–4200 (2001)

    Article  ADS  Google Scholar 

  • Mett, R.R., Hyde, J.S.: Aqueous flat cells perpendicular to the electric field for use in electron paramagnetic resonance spectroscopy. J. Magn. Reson. 165, 137–152 (2003)

    Article  ADS  Google Scholar 

  • More, K.M., Eaton, G.R., Eaton, S.S.: Determination of T1 and T2 by simulation of EPR power saturation curves and saturated spectra. Application to spin-labeled iron porphyrins. J. Magn. Reson. 60(1), 54–65 (1984)

    Google Scholar 

  • Nagy, V.: Quantitative EPR: some of the most difficult problems. Appl. Magn. Reson. 6, 259–285 (1994a)

    Article  Google Scholar 

  • Nagy, V.Y., Placek, J.: Improvement of analytical accuracy of EPR spectrometer by taking into account variations in the shapes of samples. Fresenius' J. Anal. Chem. 343, 863–872 (1992)

    Article  Google Scholar 

  • Rages, K.A., Sawyer, R.E.: Properties of microwave cavities containing magnetic resonant samples. Rev. Sci. Instrum. 44, 830–834 (1973)

    Article  ADS  Google Scholar 

  • Rinard, G.A., Quine, R.W., Eaton, S.S., Eaton, G.R.: Frequency dependence of EPR signal intensity, 248 MHz to 1.4 GHz. J. Magn. Reson. 154(1), 80–84 (2002a)

    Article  ADS  Google Scholar 

  • Rinard, G.A., Quine, R.W., Eaton, S.S., Eaton, G.R.: Frequency dependence of EPR signal intensity, 250 MHz to 9.1 GHz. J. Magn. Reson. 156(1), 113–121 (2002b)

    Article  ADS  Google Scholar 

  • Schreurs, J.W.H., Blomgren, G.E., Fraenkel, G.K.: Anomalous relaxation of hyperfine components in electron spin resonance. J. Chem. Phys. 32, 1861–1869 (1960)

    Article  ADS  Google Scholar 

  • Sidabras, J.W., Mett, R.R., Hyde, J.S.: Aqueous flat cells perpendicular to the electric field for use in electron paramagnetic resonance spectroscopy, II: design. J. Magn. Reson. 172, 333–341 (2005)

    Article  ADS  Google Scholar 

  • Smirnov, A.I., Norby, S.W., Walczak, T., Liu, K.J., Swartz, H.M.: Physical and instrumental considerations in the use of lithium phthalocyanine for measurements of the concentration of oxygen. J. Magn. Reson. B 103, 95–102 (1994)

    Article  Google Scholar 

  • Vigouroux, B., Gourdon, J.C., Lopez, P., Pescia, J.: Broadening of the ESR line, caused by the variation of the cavity Q factor across the magnetic resonance. J. Phys. E. 6, 557–558 (1973)

    Article  ADS  Google Scholar 

  • Yordanov, N.D., Christova, A.G.: Quantitative spectrophotometric and EPR-determination of 1, 1-diphenyl-picryl-hydrazyl (DPPH). Fresenius' J. Anal. Chem. 358, 610–613 (1997)

    Article  Google Scholar 

  • Yordanov, N.D., Gancheva, V., Pelova, V.A.: Studies on some materials suitable for use as internal standards in high energy EPR dosimetry. J. Radioanal. Nucl. Chem. 240, 619–622 (1999)

    Article  Google Scholar 

  • Yordanov, N.D., Genova, B.: Analysis of some non-linear effects in quantitative electron paramagnetic resonance spectrometry. Non-linear effects due to the use of cavities with TE102 and TM110 modes. Anal. Chim. Acta 353, 99–103 (1997)

    Article  Google Scholar 

  • Yordanov, N.D., Mladenova, B., Petkov, P.: Studies on the uncertainties in quantitative EPR estimations due to the construction of the cavities used. Anal. Chim. Acta 453, 155–162 (2002)

    Article  Google Scholar 

  • Yordanov, N.D., Slavov, P.: Influence of the diameter and wall thickness of a Quartz pipe inserted in the EPR cavity on the signal intensity. Appl. Magn. Reson. 10, 351–356 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag/Wien

About this chapter

Cite this chapter

Eaton, G.R., Eaton, S.S., Barr, D.P., Weber, R.T. (2010). A Deeper Look at B1 and Modulation Field Distribution in a Resonator. In: Quantitative EPR. Springer, Vienna. https://doi.org/10.1007/978-3-211-92948-3_6

Download citation

Publish with us

Policies and ethics